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Applications that aggregate and query data from distributed embedded devices are of interest in many set-
tings, such as smart buildings and cities, the smart power grid, and mobile health applications. However,
such devices also pose serious privacy concerns due to the personal nature of the data being collected. In
this article, we present an algorithm for aggregating data in a distributed manner that keeps the data on
the devices themselves, releasing only sums and other aggregates to centralized operators. We offer two
privacy-preserving configurations of our solution, one limited to crash failures and supporting a basic kind
of aggregation; the second supporting a wider range of queries and also tolerating Byzantine behavior by
compromised nodes. The former is quite fast and scalable, the latter more robust against attack and capa-
ble of offering full differential privacy for an important class of queries, but it costs more and injects noise
that makes the query results slightly inaccurate. Other configurations are also possible. At the core of our
approach is a new kind of overlay network (a superimposed routing structure operated by the endpoint de-
vices). This overlay is optimally robust and convergent, and our protocols use it both for aggregation and as
a general-purpose infrastructure for peer-to-peer communications.
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1 INTRODUCTION

New distributed computing platforms are being created at a rapid pace as organizations become
more data-driven, Internet connectivity becomes more widespread, and Internet of Things devices
proliferate. For example, in proposals to make the electric power grid “smart,” network-connected
smart meters are deployed to track power use within the home and in larger buildings. The idea
is that these data could be aggregated in real-time by the utility, which could then closely match
power generation to demand and perhaps even dynamically control demand over short periods
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of time by scheduling heating, air conditioning, and ventilation systems. Such a capability could
potentially enable greater use of renewable electric power generation and reduce waste.

Yet the technical challenges of creating such a system are daunting, and they extend well beyond
the obvious puzzles of scale, real-time responsiveness, and fault-tolerance to also include public
resistance to this form of universal monitoring infrastructure. Electric power consumption data can
reveal a tremendous degree of detail about the personal habits of a homeowner, and customers are
reluctant to share their smart meter data with the grid owner due to fears it will be used to profile
them [38].

Today’s most common approach is somewhat unsatisfactory: Either the utility itself or some
form of third party collects the sensitive data into large data warehouses, computes any needed
queries against the resulting data set, and then shares the results with the higher level control
algorithm. The data warehouse plays a key role in protecting the consumers’ privacy but, to do
so, must be trusted and carefully protected.

The issue is not confined to smart grid uses; there are other types of cyber-physical systems in
which the collection and storage of sensitive data is an obstacle to deployment. For example, a city
or building owner might wish to query the images captured by a collection of security cameras to
find criminal activity, but many people would object to collecting all the cameras’ video feeds in a
central location where they could also be used to track innocent citizens. The manager of a smart
office building might query room-occupancy sensors to determine which parts of the building are
inactive (and thus can have light and climate control turned off), but employees would not want
these data to be used to identify who works the latest or comes in earliest.

Furthermore, all forms of data warehousing are under increased government scrutiny, partic-
ularly in Europe. Data have value: For example, the World Economic Forum has an activity that
aims to create new legislative models for personal data protection [37]. Data are the “new oil” of
our economy (as put by Meglena Kuneva, European Consumer Commissioner, in March 2009),
and, increasingly, are being treated as assets that the customer owns and controls [21]. A data
warehouse becomes problematic because it concentrates valuable information in a setting out of
the direct control of the owner, and where an intrusion might cause enormous harm.

Here we describe a practical alternative: a decentralized virtual data warehouse in which the
smart devices collaborate to create the illusion of a data warehouse with the desired properties.
The data can be queried rapidly through an interface that is reasonably expressive; while we don’t
support a full range of database query functionality, we definitely can support the kinds of queries
needed for smart grid control or for other kinds of machine learning from smart devices. Focusing
on the smart grid, our algorithm would allow power generation and demand balancing as often
as every few seconds, which is more than adequate: In modern smart grid deployments, load-
balancing occurs every 15 minutes, and even ambitious proposals don’t anticipate region-wide
scheduling at less than a 5-minute resolution.

Although computation occurs in a decentralized way, our algorithm ensures that individual
smart meters have a light computational load centered on basic cryptographic operations involving
small amounts of data and simple arithmetic tasks required for aggregation, such as computing
sums. Similarly, the load imposed on any individual communication network link is modest. We
assume a very simple and practical network connectivity model, and although we do require that
the infrastructure owner (the power utility) plays a number of roles, our protocol has a highly
regular pattern of communication that can easily be monitored to detect oddities. We believe that
this would be enough to incent the utility operator to behave correctly: the so-called honest but
curious model.

The cryptography community has developed protocols that address some aspects of the problem
we have described, notably homomorphic encryption and secure multi-party computation. Both
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methods use encryption and computation on ciphertexts to keep the values contributed by the
smart devices secret while they are being aggregated. However, neither approach is scalable or
efficient enough for use in our target settings.

In contrast, our approach scales extremely well, is easy to implement (our experiments run the
real code, in a very detailed emulated setting), and is quite fast. We offer several levels of privacy:

(1) In one configuration of our protocol, the smart meters trust one another to operate cor-
rectly and are trusted to not reveal intermediary data used in our computation to the (un-
trusted) system operator. Here, we can rapidly and fault-tolerantly compute aggregations.
The system operator learns nothing except the aggregated result.

(2) A second configuration of our system is more powerful but a little more costly. Here we
can support a much broader class of queries: We still focus on aggregation, but broaden
our model to permit queries that prefilter the input data and hence might include or ex-
clude specific households. Furthermore, in this second configuration, we assume that some
bounded number of smart meters has been compromised and will behave as Byzantine ad-
versaries. Nonetheless, we are able to fully protect the private data by injecting noise in a
novel decentralized manner. Here we achieve differential privacy.

(3) Beyond these two strongly private options, still further configurations of our protocol
are also possible; of particular interest is one that could reveal a small random sample of
anonymous raw data records to attackers but (unlike differential privacy) give exact query
results.

In this article, we present our design for this new fault-tolerant, anonymous distributed data
mining protocol and prove its correctness. In a network of n nodes, query results can be computed
in time O(log n) (the lower bound for a peer-to-peer network), and our anonymity mechanism in-
troduces just a modest O(log n) inflation in the numbers and sizes of messages on the network. The
solution can tolerate substantial levels of crash failures, can be configured to overcome bounded
numbers of Byzantine failures, and is able to filter extreme data points while carrying out a wide
range of aggregation computations. While our focus here is on aggregation, the novel network
overlay protocol we introduce can also support a variety of other styles of peer-to-peer and gossip
communication.

Specifically, the three main contributions of this article are:

(1) A deterministic peer-to-peer overlay that is optimally efficient and fault-tolerant and sev-
eral protocols for anonymous and fault-tolerant message passing on this overlay.

(2) A decentralized anonymous query system based on this overlay network that can perform
aggregate queries over client data without revealing anything about individual contribu-
tions.

(3) Adesign for a differentially private virtual data warehouse, based on the anonymous query
system, that provides differentially private query results without a trusted third party and
despite the presence of adversarial (Byzantine) client nodes.

The rest of this article is organized as follows. First, in Section 2, we clarify the system model we
are using and state our assumptions and goals. Section 3 discusses related work, including other
approaches we rejected. Section 4 introduces our overlay network and lays out the details of our
algorithm, Section 5 presents some extensions to it, and Section 6 provides proof of each version’s
correctness. Section 7 evaluates the practicality of our algorithm and presents some experimental
results. In Section 8, we discuss how the peer-to-peer overlay we created as a part of this algorithm
can be used to provide additional security in other peer-to-peer settings, and Section 9 concludes.
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2 SYSTEM MODEL

Our target is a system set up and administered by a single owner or operator, with all participat-
ing devices connected to the same reliable network and logically within the same administrative
domain.! We assume that all client nodes (i.e., smart meters) are kept up to date on the list of valid
peers (other clients) by a reliable membership service run by a system administrator. We expect
the set of clients to change fairly infrequently since adding new smart meters or sensors to the
network would require real-world construction effort, so the membership service should be trivial
to implement. Furthermore, we assume that each client can be assigned an arbitrary integer ID
by the system owner and that the membership service also keeps nodes up to date on these IDs
(which should only change when membership changes). Thus, in our system, a node can choose
any valid virtual ID and send a message to the node at that ID, and it knows the set of valid virtual
IDs.

Many practical distributed systems [4, 19, 25, 36] assume that all nodes have well-known public
keys and can digitally sign all of their messages. We also make this assumption; it requires just
a standard Public-Key Infrastructure (PKI), which the system owner can operate. Although the
owner is not a client node, we also assume that the owner has a public key that is recognized by
all the clients.

We consider the system owner or operator to be an honest-but-curious adversary whose goal
is to learn as much as possible about the clients (regardless of their consent) without disrupting
the correct functioning of the system and without wholesale compromise of the computing nodes.
Thus, all plaintext messages sent on the network will be read by the owner, but the owner will
not tamper with signed messages, decrypt encrypted ones, or attempt to impersonate smart me-
ters. To prevent the owner from eavesdropping, the client nodes sign and encrypt all messages
they send to other nodes using standard network-layer security (i.e., TLS [8]), and we will assume
henceforth that all correct clients implement such encrypted communications. Note that this does
not require us to assume that client devices are computationally powerful; TLS is an industry stan-
dard, and even limited-resource systems often include hardware implementations of the needed
functionality.

We consider two levels of trust for the client nodes (the smart metering devices). The fastest im-
plementation of our protocol involves a level of trust: Customers trust their own smart meters, but
also those of other customers. These are assumed not to leak data to the system operator and not to
be compromised. A slightly slower version of our protocol makes much weaker assumptions and
can tolerate Byzantine (arbitrary and malicious) behavior by up to a bounded number of devices.
Here, the devices might pretend to run our protocol but secretly submit all measured data directly
to the operator. Our solution for the former case yields exact answers to aggregation queries and
can tolerate fairly high levels of crash faults. For the latter case, we inject noise that prevents the
extraction of private information from the query results; hence, we give inexact results but have
stronger protection guarantees (indeed, we can even support a wider class of queries and still offer
stronger privacy guarantees).

Our system is built to tolerate client failures. We assume that up to ¢ client nodes may fail during
the process of executing a single distributed query. A crash failure includes any situation in which
the client stops sending and receiving messages, whether due to loss of power, interruptions in
network connectivity, or software failure on the client. When our protocol is configured to tolerate
Byzantine failures, we bound the percentage of compromised nodes but assume that Byzantine
clients may deviate arbitrarily from the protocol. However, they cannot falsify the origins of the

1 This means that any participating device can communicate with any other device through the network infrastructure.
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messages they send, and they cannot tamper with messages sent by other nodes since honest nodes
should only accept messages with valid digital signatures from the sender claimed in the message.
Furthermore, since we assume that the devices have been registered with the operator and trust
the resulting list of devices, malicious clients are prevented from using Sybil attacks (as defined in
Douceur [10]) to artificially increase the number of malicious nodes.

2.1 Goals

Now that we have defined the context of our system, we can give a more concrete definition of
the goals of our data mining protocol. Assume that each client node starts with a single record, or
data value, and that the system owner initiates a query by broadcasting a request that describes
the desired aggregation operation, such as the computation of a histogram over the data values. By
the end of the protocol, the system owner should receive a query result that is correctly computed
from the values originating at correct, nonfailed nodes.

We consider two categories of queries. Both compute aggregates: sums or other values that
combine the input data, such as histograms. The first class of queries lacks any form of input
filtering: If issued over a population, the output reflects the result of performing the requested
aggregation over the full set of data values, counting each value exactly once. We refer to these as
unfiltered aggregation queries. The second class of queries adds a prefiltering step to the first class,
for example selecting data only from certain households or taking only data that satisfy some sort
of predicate on the data items themselves. These filtered queries are more expressive but create a
risk that private data could be deanonymized, for example by running the same query twice, once
including all households and a second time excluding some particular target household: The delta
is the data for that household. Accordingly, whereas we give exact results for unfiltered queries
(the individual’s data will be hidden in the aggregate), we offer the option of noise injection for the
filtered case. Here, the gold standard is differential privacy [12], and we will see that our solution
can achieve that guarantee, if desired.

We also consider two classes of client nodes. With trusted client nodes, only the query result
should be released by any query. We are able to achieve this property for unfiltered queries. In
contrast, if some of the client nodes might behave in a Byzantine manner, we need a stronger
guarantee: Because the Byzantine clients might publish any data they glimpse, we require that all
data seen by client nodes must be anonymous and also contain injected noise. Furthermore, we
inject extra noise so that the query result itself becomes imprecise. We can achieve differential
privacy in this case even with filtered queries.

Differential privacy turns out to come at a nontrivial cost. Accordingly, we also offer other
configurations in which some anonymous data might be leaked by Byzantine nodes. Here, we
do not achieve differential privacy, but we do gain performance and are able to give exact query
results: a middle ground between what some might see as unwarranted trust (our first case) and
what could be seen as excessive caution (the differential privacy case). This third option might be
appealing in settings that demand very rapid queries or where a noisy query result might not be
acceptable.

3 RELATED WORK

Privacy concerns in the deployment of smart grids have been a popular topic for study since smart
meters were introduced. Techniques from the area of Non/Intrusive Load Monitoring [22] can ex-
tract the time of use of individual electrical appliances from meter data, and Lisovich et al. [26]
show that this information can be used to infer much about the personal habits of the home’s oc-
cupants. Anderson and Fuloria [3] point out that the current approach of most smart grid projects
is to send all fine-grained smart meter data directly to a centralized database at the utility, where
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they can easily be accessed by employees and government regulators. McDaniel and McLaughlin
[27] also survey the security and privacy concerns that can arise in smart grids.

The most widely known existing solutions to the problem of privacy-preserving data mining
employ secure multiparty computation (MPC) or homomorphic encryption. In the former scheme,
for each value of n (the size of the system) and each aggregation query, a special-purpose circuit
is designed that combines values in ways that can embody a split-secret security mechanism and
can even overcome Byzantine faults. However, costs are high. For example, in Saia and Zamani
[34] the authors remark that the size of an aggregating circuit will often be much larger than n
and that, when this is the case, the overall complexity of the MPC scheme grows roughly as n®.
Furthermore, each step that a participant takes when executing a garbled circuit (i.e., evaluating
a single gate) requires multiple cryptographic operations in advanced cryptosystems. Although
this may be reasonable for clients that are desktop computers or servers, it represents a significant
computational overhead for the embedded devices our system targets.

Homomorphic encryption schemes keep data encrypted with specialized cryptosystems that al-
low certain mathematical operations to be executed on the ciphertexts, producing a ciphertext that
decrypts to the results of applying the same operations to the unencrypted data. This would allow
clients to aggregate encrypted data and decrypt only the query result, as in the system proposed
by Li et al. [24]. However, fully homomorphic encryption (in which any function can be computed
on ciphertexts) remains exponentially slow, and practical partially homomorphic cryptosystems
such as Paillier [32] allow only addition to be performed on encrypted data. Thus, systems based
on partially homomorphic encryption are restricted to only performing sum queries. Similar to
MPC, aggregation using homomorphic encryption also requires each client to perform multiple
expensive cryptographic operations on large ciphertexts, which represents a high computational
overhead in our target environment of smart devices.

The problem we address is similar to those addressed by Differential Privacy, a framework first
defined by Dwork [12, 13] which seeks to preserve the privacy of individual contributions to a
database when computing functions on that database. In differentially private systems, a small
amount of noise is added to the result of each query run on a database to ensure that a curious
adversary cannot analyze query results to determine any particular individual’s contribution to
the database. (In other words, the noise causes the margin of error of the result to be greater than
a single individual contribution.) The noise introduced is a Laplacian function proportional to the
privacy sensitivity of the query, which is a measure of how much a single record can affect its
result.

However, Dwork’s differential privacy model is normally formulated for a data warehousing
situation with a trusted third party. As noted, in our setting, there is no party that can be trusted
to store the entire database. In fact, we are not the first to explore extensions of differential privacy
for use in a distributed setting. Two notable results are Dwork et al.’s distributed noise generation
protocols [13] and Acs and Castelluccia’s design for a smart metering system, in which each meter
adds noise to its measurement locally before contributing it to the aggregate [2]. However, these
systems still rely on MPC or homomorphic encryption to keep individual values hidden during ag-
gregation, so they suffer the same high computational overheads. Our work innovates by achieving
differential privacy in a very different way, at far lower costs and with much better scalability, as
we discuss in Section 6.6.

In constructing our system, we will make use of a peer-to-peer overlay network for communi-
cating among the clients. This network is based on gossip protocols, which were first developed by
Demers et al. [7]. We design our gossip-like protocol specifically to avoid interference by Byzan-
tine nodes, a problem which has not seen nearly as much study as crash fault-tolerant gossip. The
most notable prior work on Byzantine fault-tolerant gossip is BAR gossip [25]. The difference is
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that the authors assume that gossip is being used specifically to deliver a streaming broadcast from
some origin node, and their solution is to use cryptographically “verifiable randomness” to prevent
Byzantine nodes from picking gossip partners at will.

4 OUR ALGORITHM

Our algorithm is based on a carefully constructed overlay network that clearly defines how the
client nodes communicate and makes it easy to extend the system to tolerate Byzantine faults. It is
similar to a peer-to-peer gossip network, except it is completely deterministic instead of random.
This allows nodes to independently determine when each phase of our protocol has finished.

Before describing our full data mining protocol, we will describe our overlay network and the
ways nodes can communicate on it. Our approach assumes that the smart devices have direct
peer-to-peer connectivity: For example, they might have built-in wireless networking capability,
similar to a smart phone, and the wireless partner of the utility could provide routing between
devices. A “tunneling” model could also work: The devices could all connect back to the owner-
operator, which would then provide routing at some central location. As will be shown later, our
solution imposes only light networking and computing loads on the devices themselves. Although
the aggregated traffic on a central routing system (for example, in a tunneled implementation)
might be moderately heavy, when one works out the numbers for even a fairly large regional
deployment, they are well within the capabilities of modern network routers.

4.1 Building the Peer-to-Peer Overlay

Although our overlay network permits client nodes to communicate with each other in a peer-
to-peer fashion, it does not use the fully decentralized model often seen in work on peer-to-peer
systems, Traditional peer-to-peer systems assume that there is no way for a central server to man-
age membership in the network, so peer discovery becomes a hard problem that can be disrupted
in many ways by Byzantine nodes (see, for example, Jesi et al. [18]). As we described in Section 2,
however, the data collection systems we target (such as the smart grid) already have a central
server that monitors node connections to the network, which we will use to provide a basic mem-
bership service. Thus we can assume that every node in the network reliably knows the set of
peers and their identities.

Our peer-to-peer communication system works as follows. Each client node is assigned a unique
integer ID between 0 and n, where n is the total number of nodes in the system. Each client node
also keeps track of the “round” of gossip it is in; like most gossip systems, we will describe it as if
it takes place in synchronous rounds, but, in practice it can be implemented asynchronously. We
will define a function g : ID X Round — ID X Round that specifies the gossip partner for each node
at each round of communication: if (i, j) = (a, b), then node i at round j should send a message
to node a, which will receive the message in round b. We assume for now that the number of
nodes n is a prime number such that 2 is a primitive root modulo n,% although we will revisit this
assumption in Section 7.2. Under this assumption, we define the gossip function as

g(i,j) = ((i + 2/) mod n, (j + 1) mod (n — 1)). (1)

Note that the Round component of the function’s output always refers to the round immediately
following its input; for reasons which will soon become clear, we only number rounds 0 through
n —1 in this formal definition. The sequence of message propagation this function generates is
shown in Figure 1(a), from the perspective of node 0.

2This means that the sequence 2'mod n, 22mod n, . . ., 2" 'mod n generates each integer between 1 and n exactly once.
For example, 2 is a primitive root modulo 11 because {2'mod 11, . . ., 2!%mod 11} = {2, 4, 8, 5, 10,9, 7, 3, 6, 1}.
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Fig. 1. (a) Information flow from node 0 in our scheme, showing two full epidemic cycles of log, n rounds
each. Every process sends and receives one message per round; we omitted the extra messages to re-
duce clutter. Similarly, although each round can be viewed as a new epidemic, the figure just shows two.
(b) Example of the path taken by a tunneled message from node 0 to node 3. This message would have 5
layers of onion encryption since it has 5 different recipients.

This function has two useful properties that allow the sequence of messages it prescribes to
have the benefits of a random gossip system while being resilient to Byzantine behavior: namely,
efficiency and uniformity. In order to carefully define these properties and prove that our function
has them, we will need to make use of the following formalism, which represents each round of
communications as a layer in a graph. For brevity, we will use the notation [n] = {0,1,...,n - 1}.

Definition 4.1. A layered n-party gossip graph, denoted by LG(n), is a directed graph with vertex
set [n] X [n — 1]. The sets [n] X {j},forj = 0,...,n — 2, are called the layers of the graph. There is a
permutation of the vertex set, denoted by g, which cyclically permutes the layers. In other words,
for every vertex (i, j), g(i, ) is a vertex of the form (k, j + 1) for some value of k (where the index
j + 1is interpreted modulo n — 1). The edge set of the graph contains exactly two outgoing edges
from each (i, j): One of them points to (i, j + 1) and the other points to g(i, ).

The edges in this graph represent the flow of information, which is why there is always an edge
from (i, j) to (i,j+ 1); it represents the fact that a message that reaches i in round j will still be
in i’s memory at round j + 1. Now we can precisely define what it means for our function to be
efficient.

Definition 4.2 (Efficient Gossip Property). A graph LG(n) has the efficient gossip property if, for all
(i, 7), the set of vertices reachable in k = [log, n] rounds is the entire layer [n] X {j + k}.

Note that [log, n] is the fastest that data could possibly spread through the network in a peer-
to-peer fashion if the data start at a single source. This property means our deterministic gossip
function is as efficient at spreading information as the best-case scenario for traditional random-
ized gossip and guarantees that any node can find a path to any other node in [log, n] hops while
sending only messages approved by the function.
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We can prove that the g we previously defined has the efficiency property. Suppose we want
to find a path from (i, j) to (x,j + k). By choosing between the two outgoing edges at every level
from j to j+ k — 1, we can find a path from (i, ) to (i + y,j + k) whenever y is an integer rep-

resentable as the sum of a subset of {2/,2/*!,. .., 2/*k~1} Note that this is the same as saying
that y = (2/)z, where z is representable as the sum of a subset of {1,2,4,...,2%7!}. Equivalently,
y = (2/)z where z is any integer in the range 0,. .., 2k —1.1In particular, y = x — i can be repre-

sented in this way by setting z = y/(2/) mod n. (Division by 2/ mod n is a well-defined operation
because n is an odd prime. Also note that y/(2/) mod n belongs to the set {0,...,n — 1} which is a
subset of {0, ...,2~K71})

The other useful property of our peer-to-peer communication network is its uniformity, which
we define as follows:

Definition 4.3 (Uniformity Property). A graph LG(n) has the uniformity propertyif, for all distinct
a, b in [n], there is exactly one value of j such that g(a, j) = (b,j + 1).

In a graph with this property, each node gossips with every other node exactly once before
gossiping with the same node again. This minimizes the risk that crash failures cause a split in
the gossip network since all possible paths are used equally often. It also makes it difficult for
Byzantine nodes to target their malicious behavior at a particular victim since they will get only
one chance in n to send a legitimate message to that victim, and honest nodes can discard messages
that do not come from the sender prescribed by the function.

It is straightforward to prove that the g we defined earlier has the uniformity property. Note
that the equation g(a, j) = (b, j + 1) translates to 2/ mod n = b — a when using our definition of
g, and there is a unique j satisfying this equation by our assumption that 2 is a primitive root
modulo n.

4.2 Communicating on the Overlay

There are three ways in which we use our overlay network to send messages between nodes:
“tunneled” or “onion-routed” message sending, disjoint multicast, and flooding. The first two can
be combined for a tunneled multicast, which uses onion routing for each path in the multicast. Each
of these communication methods are used in different stages of our data aggregation protocol.

To send a tunneled message through the network, sending node a finds a path to receiving node b
by performing a breadth-first search on the graph generated by function g for the current round. A
“path” is any sequence of transitions through the graph (including remaining at the same node for
a round) that includes at least flog; n1/, nodes; we place this minimum length restriction in order
to preserve the sending node’s anonymity, as explained in Section 6.5. For example, Figure 1(b)
shows one possible path from node 0 to node 3 through a network of 11 nodes. Such a path will
always exist within 2[log, n] rounds of the current round since the graph is efficient (it would be
[log, n] if we did not specify a minimum length). Then a encrypts its message with an encryption
onion, where each layer corresponds to one node along the path and can only be decrypted by
the private key of that node (similar to onion routing [33]). At each layer of encryption, the node
includes an instruction for the node that can decrypt that layer indicating how many rounds it
should wait before forwarding the message.

By relaying messages in this manner, a can be assured that no intermediate nodes will learn the
message it is sending to b or the fact that a is the sender and b the recipient of a message. Each node
in the path will learn only its immediate predecessor and successor when it relays the onion, and,
assuming messages are continuously being sent around the network, even the first node in the
path will not know it is the first node because a could have relayed the message from a previous
sender.
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Fig. 2. (a) A disjoint multicast from node 0 to nodes 3, 5, and 10. (b) Overview of the design of the basic
crash-tolerant aggregation protocol. In the Shuffle and Echo phases, only a subset of the message paths is
shown, and arrows of the same color carry the same tuple.

While nodes are relaying tunneled messages, they may receive more than one encrypted onion
that they need to forward to the same successor or receive an encrypted onion along with a normal
(unencrypted) message. To minimize time and bandwidth overhead, all these messages should be
forwarded at once in the same signed “meta-message.”™

To send a disjoint multicast to a set of k nodes, a needs to find a set of k node-disjoint paths
through the overlay network to the receivers.* These paths can be found by a repeated breadth-
first search of the graph from a to the receivers, in which the nodes on the path to a receiver are
deleted once the receiver is found. Our experiments suggest that these paths will have length at
most k + [log, n] as long as the total number of elements in the paths (k[log, n]) is of the same
order of magnitude as v/n. For values of n above roughly 10,000, this property holds, and our system
targets large sizes in this range. Node a then adds to each of k copies of the message instructions for
each intermediate node, indicating how many rounds it should wait before forwarding the message
in order to follow the path a has chosen and sends them out. The node-disjoint property of the
paths means that they are failure-independent, which minimizes the impact of node failures on this
multicast: ¢ failed nodes can prevent at most ¢ recipients from receiving the message. Figure 2(a)
illustrates a node performing a disjoint multicast to three recipients. Note that even with n as small
as 11, k = 3 disjoint paths can still be found in k + [log, n] = 7 rounds.

The combination of these two communications primitives is the tunneled multicast. In a tun-
neled multicast, node a finds a set of k node-disjoint paths to its chosen k recipients, as in the
regular multicast, but then encrypts each copy of the message with an encryption onion and
puts the instructions for each intermediate node in that node’s encryption layer, as in tunneled
messaging.

If the sending node wishes to prevent nodes other than the desired recipients from reading the
message but does not care about remaining anonymous, it can simply encrypt each copy of the

3Practically, this can be implemented by sending the messages in sequence over a TLS connection.
4To clarify, these are paths that do not have any nodes in common.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 16. Publication date: October 2018.



Anonymous, Fault-Tolerant Distributed Queries for Smart Devices 16:11

message with the recipient’s public key before sending it along the path to that recipient. The
forwarding instructions are kept in the clear so the intermediate nodes do not need to do any
work decrypting an onion layer. We will refer to this variant as an encrypted multicast.

Finally, a node can send a message by flooding, in a manner very similar to a standard epidemic
gossip algorithm. To flood a message, node a adds a time-to-live field to the message initialized
to [log, n] + t, where ¢ is the number of failures tolerated, and begins sending it to its gossip
partners. Upon receipt of a flood message, a node should decrement the TTL field and forward
the message to its next gossip partner if the TTL is still positive. Flooded messages are guaranteed
(by the efficiency and uniformity properties) to reach every node in the network in [log, n] + f
rounds, where f is the actual number of failures, so nodes can stop forwarding a flood message
when its TTL reaches 0. Flooding can be used for broadcasts, or it can be used to send a message
to a single recipient in a highly fault-tolerant manner by encrypting the body of the message with
the recipient’s public key.

To simplify failure detection and speed up our protocol, we require that every node in the net-
work send a message on every round that the overlay is running. If a node has no messages to
send or forward in that round, it should simply send an explicitly empty message. This way nodes
do not need to wait for the entire message timeout interval to conclude that their predecessor is
not sending a message.

Discussion. Even if operated in a network smaller than the target size mentioned earlier, or with
an unusually high rate of failures, our solutions will not fail catastrophically. The primary risk is
of a gradual degradation of guarantees. For example, if a multicast sender can’t find enough node-
disjoint paths along which to relay data, the algorithm could consider paths that share just a single
node (followed by paths that share two nodes and so on). Thus, we could still run our protocol,
but now some nodes would find themselves in more than one path.

The failure of such a node would disrupt more than one path, and, with enough such failures,
data from a healthy node might not be properly relayed. But notice that this will depend on a very
specific set of nodes failing, and only in certain rounds, and, because nodes have no control over
their position in the overlay, the weakness would be very hard to exploit.

In future work, we plan to explore this question experimentally, but we believe that our solution
would remain quite useful even in such cases. With a higher probability of disrupted rounds, the
risk is a gradually increasing possibility of message delivery failure. For the aggregation protocol
given later, this would manifest as queries that fail to produce a result and must be resubmitted
or that undetectably omit some inputs. In a smart grid or a similar setting, where the input data
themselves are of limited quality in any case, such outcomes might well be acceptable, particularly
if the infrastructure owner knows that they are highly unlikely.

4.3 Basic Crash-Tolerant Aggregation

Using the overlay network we have just defined, we can build an algorithm for fault-tolerant,
anonymous data mining. Assume for the moment that the query is unfiltered and that client nodes
are trusted: They may fail by crashing, but they will not disclose data to the system operator and
are permitted to glimpse data contributed by other client nodes. We will still seek a basic privacy
guarantee; namely, that any data originating on some other are seen only in an anonymous form
and that no client system can see more than a very small number of these randomly selected
anonymous records.

At a high level, responding to a query with this algorithm involves three phases: Shuffle, Echo,
and Aggregate. In the Shuffle phase, nodes send their values to a set of proxies who will contribute
the values to the query on their behalf using onion routing to hide the source of the values. In the
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Echo phase, proxies for the same value echo their values to each other to accommodate failures
during shuffle. Finally, in the Aggregate phase, each subset of nodes that contains a single proxy
for each value conducts binary-tree peer-to-peer aggregation; this phase is the only one that does
not use the overlay. The phases of the algorithm are sketched in Figure 2(b).

Shuffle Phase. First, the owner broadcasts its desired query function to all nodes, using ordi-
nary direct messages on the network. Upon receiving a query, each node picks ¢ + 1 proxy nodes,
choosing one at random from each sequence of ;{5 consecutive node IDs. Each sequence of ;5
IDs forms an aggregation group.’ Then, each node forms a tuple (R, v, [p1, pa, . . ., pr+1]) Where R
is the query number (a monotonically increasing value set by the owner when it broadcasts the
query), v is the value it will contribute to the query, and [p1, ps, - . ., pr+1] is the list of proxies. It
uses a tunneled multicast to send this tuple to its chosen proxies, along t + 1 disjoint paths through
the overlay. After ¢ + 1 + 2[log, n] rounds of communication, all messages should have reached
their destination. If a node receives a tuple with a query number higher than the one it is currently
processing, it buffers the tuple and waits to receive a query request broadcast from the owner (as-
suming that the owner’s message has been delayed longer than the peer-to-peer message). If it
receives a tuple from a past query (a lower query number), it should discard that tuple.

Echo Phase. At the end of the Shuffle phase, each proxy will have approximately ¢ + 1 tuples
containing a value and a list of other proxies. Each tuple indicates a proxy group that the node
belongs to, where a proxy group is simply the set of nodes that are all proxies for the same value.
Within each proxy group, though, not all nodes may actually have the tuple due to failures along
the path from the origin node. To resolve this problem, each node encrypted-multicasts a copy of
each proxy value it holds to the t other nodes that should proxy the same value. (Onion encryption
is not necessary since the values are now being sent from a proxy, not the node that contributed
them.) After another ¢ + 1 + 2[log, n] rounds of communication, all echo messages should have
reached their destination.

Aggregate Phase. This is the only phase in which we do not use our overlay network for node-
to-node communication. Instead, nodes within each aggregation group (as defined in the setup
phase) communicate directly with each other. Although it would be possible for us to conduct
aggregation within the groups using only the overlay network, this would reintroduce failures
into groups that contain only healthy nodes (since communications must be routed through the
entire network) and increase the number of messages that must be sent.

Within each aggregation group, nodes use a binary tree to aggregate the values into a leader,
along with a count of the number of participating nodes. A tree can be induced on the group by
a simple ordering of the node IDs, making the lowest half of the IDs the leaves and adding rows
in ascending order. A non-leaf node should wait for an incoming message with the current query
result, then combine its values with the intermediate result, increment the participation count
by the number of values it contributed, and send the new query value to its parent. In order for
tree aggregation to produce correct results, query functions must be associative and commutative.
While this does preclude some types of queries, it is not as restrictive as addition-only queries
(which is the restriction for systems based on homomorphic encryption).

Finally, all ¢ + 1 leaders send their results to the system owner, along with the count of how
many nodes participated. If their values differ, the owner should accept the result that has the
most contributions. In order to accommodate the case where a leader node has failed, the owner
should wait for a fixed timeout after receiving each result instead of waiting for ¢ + 1 results.

>Nodes could be divided into aggregation groups by any deterministic function; we use consecutive ID sequences because
it is the simplest.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 16. Publication date: October 2018.



Anonymous, Fault-Tolerant Distributed Queries for Smart Devices 16:13

This achieves our first goal: We now have a solution in which a trusted set of client systems
collaboratively compute the result of an unfiltered aggregation query. Although the client nodes
do glimpse a small randomized subset of anonymous records, this is not a sufficient amount of
data to enable any client node to reconstruct the entire data set or to attempt a de-anonymization
attack on the system.

5 EXTENSIONS TO OUR ALGORITHM

The basic version of our protocol presented in Section 4 is intended for a system with a small
number of crash failures. It does not work as well when the number of failures is larger than
O(logn), and it is not designed to tolerate Byzantine failures. In this section, we will describe
some alternate versions of our algorithm that can handle these cases. The Byzantine fault-tolerance
method injects noise, and, because this noise introduces very strong protection, that version of our
protocol can be used even with filtered queries.

5.1 Tolerating High Failure Rates

Sending messages along independent paths through the overlay to avoid faults minimizes the
number of nodes that must relay each message (reducing communications overhead), but this
method becomes inefficient when ¢ is larger than O(log n) due to the difficulty of finding so many
independent paths. Instead, if the number of failures is expected to be a large percentage of n, the
Shuffle and Echo phases can be replaced with two phases of flooding. In the Scatter phase, nodes
flood t + 1 encrypted copies of their values to randomly chosen relay nodes, and, in the Gather
phase, the relay nodes flood their encrypted values to the proxy nodes that can decrypt them.

Scatter Phase. First, the owner broadcasts its desired query function to all nodes, and each node
picks a proxy from each of ¢ + 1 aggregation groups, as in the base protocol. In addition, for each
proxy that a sending node has chosen, the sender picks a “relay” node for that proxy, uniformly at
random from the set of all nodes not chosen as proxies. The sender creates a copy of its tuple for
each proxy, encrypted with the public key of that proxy. It then floods these encrypted tuples to
their relay nodes using the single-recipient version of flood in which the message is encrypted with
the recipient’s public key. (This means that each tuple is inside a simple two-layer onion, with the
outer layer encrypted for the relay and the inner layer encrypted for the proxy.) After [log, n] + ¢
rounds of flooding, every message will have reached every node, and nodes can discard messages
they cannot decrypt.

Gather Phase. Once the Scatter phase has finished, each relay node begins flooding all of the tu-
ples it received and decrypted (each relay node will have approximately ¢ + 1). Since these tuples
are already encrypted with the public keys of the proxy nodes that should receive them, this is
equivalent to a single-recipient flood, but the relay nodes do not need to do any additional encryp-
tion. After another [log, n] + t rounds of flooding, every message will have reached every node,
which means all healthy proxy nodes have received all of their proxy values.

Aggregate Phase. Unchanged from the base protocol.

5.2 Tolerating Byzantine Failures

In some cases, such as when the system is at risk of viruses infecting some of the client nodes, it
might be necessary to tolerate Byzantine failures rather than crash failures. We have also developed
a Byzantine fault-tolerant version of our protocol, which adds an additional setup phase and a
Byzantine agreement phase to protect against malicious nodes. As noted, here we can support
filtered queries as well as unfiltered ones.
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Setup Phase. First, the owner broadcasts its desired query function to all nodes, as in the base
protocol. Upon receiving a query, each node still chooses one proxy uniformly at random from
each aggregation group, but there are now 2t + 1 aggregation groups (and they are defined as
sequences of Tril consecutive IDs). Each node forms a tuple (R, v, [p1,p2, - - ., p2r+1]) as before,
except that we potentially add a noise factor to the data; the noise injection is discussed in detail
in Section 6.6. It blinds the tuple by combining it with a random secret value, asks the owner to
sign the ciphertext, then unblinds the signed tuple, which produces a cleartext tuple signed by the

owner. (This is the blinded signature scheme first described by Chaum [6]).

Shuffle Phase. This proceeds as in the base protocol, except it takes 2t + 1 + 2[log, n] rounds of
communication to complete. If a node receives a tuple that does not have a valid signature from
the system owner, it should discard that tuple.

Byzantine Agreement Phase. This replaces the Echo phase from the base protocol. It is still the
case that some nodes within a proxy group for a tuple may not actually have the tuple since
Byzantine nodes along the path from the origin node may have refused to relay the message, or
Byzantine origin nodes may have sent a tuple to only some of their proxies. To resolve this problem,
nodes within a proxy group conduct two rounds of multicasts among themselves.

First, each node in a proxy group that has actually received a tuple signs the tuple with its private
key and encrypted-multicasts it to the other nodes. Once all messages have been received, each
node counts the number of copies of the tuple it has that are signed with distinct valid signatures.
If a node receives ¢t or fewer distinct signatures for the tuple (including its own), it rejects that
value and does not act as a proxy for it. If a node receives at least ¢ + 1 distinct signatures, it
concatenates them all into a single message, signs it, and encrypted-multicasts this message to all
the other nodes. A node that receives such a message accepts it if it contains at least ¢ signatures
that are different from the message’s signature, and it adds the tuples contained to its set of signed
tuple copies. Then each node decides to use a value if and only if it has received at least t + 1 distinct
signatures for it and deletes the extra copies of the tuple. This is essentially the two-phase Crusader
agreement algorithm described by Dolev [9], with the simplification that Byzantine nodes cannot
change the values they are multicasting (because they are signed by the owner), so the decision is
only on the presence or absence of a single possible value.

Aggregate Phase. This proceeds as in the base protocol, with the exception that the count of
participating nodes is not needed because the owner can simply use the query result that it receives
atleast t + 1 times. Since at least ¢ + 1 out of 2t + 1 aggregation groups contain only correct nodes,
the owner should receive ¢ + 1 identical query results from the leaders of those groups, so a result
that appears at least ¢ + 1 times is correct.

6 PROOFS OF CORRECTNESS

For each version of our algorithm, we will demonstrate that it satisfies all the goals we defined in
Section 2.1. First, we will show that the system owner always receives an aggregation result that
includes all values contributed by honest nodes. For the versions that tolerate only non-Byzantine
faults, this consists of showing that the owner will receive the correct query result despite ¢ failures.

6.1 Basic Version

In the basic version of our protocol, we start by proving that values from nonfailed sources will
always reach their nonfailed proxies. In the Shuffle phase, since each source node sends its values
along t + 1 node-disjoint paths, at most ¢ of those paths can contain a failed node (no node appears
in more than one path). This means that at least one proxy in each proxy group must have received
its value by the end of the Shuffle phase since the path from the source to that proxy contained
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no failed nodes. Then, in the Echo phase, each node in a proxy group sends its value to the other
nodes along ¢ + 1 node-disjoint paths. Due to the uniformity property of our overlay graph (gossip
partners repeat only once every n rounds), these are different paths from the paths used in the
Shuffle phase, and hence they will not be affected by the same failures. Since there are only ¢ total
failures, failures can only occur in these paths if they did not occur in the Shuffle phase. Thus,
either a value reaches its proxy during the Shuffle phase, or it reaches it by a different path in the
Echo phase. This means that every proxy that has not itself failed will have the source’s value by
the end of the Echo phase.

Now we show that there is at least one correct aggregation group. With t + 1 aggregation groups,
at least one aggregation group is guaranteed to contain no failed nodes. Since every source node
must have chosen a proxy in that group, and all source values must have reached their nonfailed
proxies, that group contains one copy of every value contributed by a source node. The query
result that the failure-free group returns to the owner will have the maximum possible count of
contributions, so it will always be accepted as the correct answer by the owner.

6.2 High-Failure Version

The high-fault-tolerant version’s correctness stems from the efficiency property of our overlay,
which guarantees that a message from any node can be flooded to all nodes in [log, n] rounds
in the absence of failures. Since the number of nodes “infected” with a flooded message doubles
each round, a single failure can delay the convergence of the flood by at most one round; even if
the failure occurs at the beginning of the flood (the worst case), the sending node will send the
message to a nonfailed node in the next round and effectively start a new flood with a different
tree of nodes one round later. This means that when a source node starts flooding its encrypted
tuple to relay nodes in the Scatter phase, the encrypted tuple is guaranteed to have reached every
nonfailed node after [log, n] + t rounds. Similarly, when a relay node starts flooding an encrypted
tuple to proxy nodes in the Gather phase, the message is guaranteed to reach every nonfailed node
in [log, n] + t rounds. This means that every encrypted tuple will have reached every nonfailed
relay by the end of the Scatter phase, and all nonfailed proxy nodes that had nonfailed relay nodes
are guaranteed to have received their tuples by the end of the Gather phase.

It may seem like some cause for concern that both the relay and the proxy for a value need to be
nonfailed in order for that value to reach its proxy. However, note that the relay nodes are chosen
to be distinct from the proxies. This means that each failure can either mean that a proxy failed or
that a relay node failed, but not both. Thus, each failure of a relay or proxy prevents exactly one
proxy from having a sender’s value (either because the proxy itself fails or because the proxy’s
relay fails). Essentially, a relay failure is equivalent to a proxy failure, and there are at most ¢ of
either kind. Since the ¢ failures can prevent at most ¢ proxies from learning the sender’s value,
each sender is guaranteed to have its value reach at least one nonfailed proxy.

The proof that there is at least one correct aggregation group is the same as with the base
protocol. There must be one aggregation group that contains no failed nodes, and every source
has a proxy in that group that is nonfailed. This group will return the correct answer to the owner.

6.3 Byzantine Fault-Tolerant Version

Although Byzantine nodes can exhibit arbitrary behavior, we have constructed our system such
that most actions that do not fit within our protocol will have no effect on the system. For example,
Byzantine nodes cannot successfully impersonate correct nodes (even if they try) because correct
nodes will not accept a connection without a valid digital signature, and they know the public keys
of all the other nodes. They cannot contribute more than one value (each) to a query because, in the
Setup phase, the owner will only sign one (blinded) value from each node per query, and correct
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nodes will not use a value with the wrong query number. Also, they cannot send messages to
nodes that are not their prescribed gossip targets because every node can independently compute
the overlay network function and will reject messages that should not have been sent in the current
round. Since the membership server is reliable, the malicious nodes also cannot use a Sybil attack
[10] to artificially increase the number of malicious nodes.

As a result, there are only two kinds of malicious behavior that we need to be concerned with
in proving that the algorithm runs correctly: stopping messages from propagating by dropping
them and sending a message to some nodes while withholding it from others. The first behavior is
covered by our tolerance of crash failures, while the second is nullified by the Byzantine Agreement
phase.

Note that in the Shuffle phase, at least ¢ + 1 proxies are guaranteed to receive the value sent by
a source node for the same reasons that at least one proxy is guaranteed to receive the value in
the basic protocol.

In the Byzantine Agreement phase, each proxy group can have at most ¢t Byzantine nodes in it,
so it has at least t + 1 correct nodes. At the beginning of this phase, some correct nodes may not
have the proxy value due to Byzantine nodes along the path to a correct node. Furthermore, if the
source of the value was a Byzantine node, it may be the case that only Byzantine nodes have the
proxy value because the source Byzantine node refused to send it to correct nodes.® However, the
fact that correct nodes only accept values that have been signed by t + 1 distinct nodes guarantees
that any value accepted by a correct node will also be accepted by every other correct node.

In order for a value to get t + 1 signatures, it must have arrived at ¢ + 1 different nodes, and
there are only ¢ Byzantine nodes. If a value is accepted in the first multicast step of this phase, this
means it must have been seen by at least one correct node. Therefore, at least one correct node
will send the t + 1 signatures to every other node in the second multicast step, and any correct
nodes that receive this message will also accept the value. Since honest nodes choose disjoint paths
to their destinations for multicasts, Byzantine nodes will only be able to prevent signatures from
reaching honest nodes if they are not in the proxy group— the disjoint paths can include group
members only as endpoints. Each Byzantine node that blocks a multicast message to one recipient
guarantees one additional honest node in the proxy group, which means one additional unique
signature will be sent to all recipients. Thus, no Byzantine node can reduce the number of distinct
signatures received by an honest node by more than 1, so a value seen by an honest node can
always achieve ¢ + 1 signatures at all honest nodes.

Restricting communication in the aggregation phase to only the processes within an aggrega-
tion group has a similar benefit to restricting communication to the overlay network in previous
phases: it limits the nodes that Byzantine participants can effectively communicate with. The ag-
gregation groups for the aggregation phase are deterministically defined and public knowledge,
so if a Byzantine node attempts to send messages to nodes outside its group, those nodes can dis-
card them as easily as they can discard out-of-order gossip messages. This means that at most ¢
aggregation groups contain any Byzantine nodes, and at least t + 1 are composed only of correct
nodes.

The correct-only groups all start with the same set of values since, by the end of the Byzantine
Agreement phase, all correct proxies within each proxy group have received and accepted the same
value. Thus, the t + 1 correct-only groups will all compute the same result. Regardless of what the ¢
aggregation groups with Byzantine nodes in them compute, the owner will receive ¢ + 1 identical
results from the correct groups and will accept their value as the answer.

®Conversely, if the source of the value was not Byzantine, then at least one correct proxy has the value, which is how we
know that any value contributed by an honest node will be included in the aggregate.
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6.4 Preventing Data Pollution

For the BFT version of our protocol, it is not sufficient to prove that the owner receives a query
response that includes all contributed values. We must also consider the possibility that the Byzan-
tine nodes contribute wildly incorrect data in order to make the query result inaccurate, even
though it completes successfully. Such pollution attacks can have a substantial impact; for exam-
ple, in one highly visible event during 2008, Amazon S3 directed all writes to a single server for a
period of nearly 8 hours. The issue was ultimately blamed on a faulty aggregation participant that
kept asserting that the server in question had an infinite amount of free space [1]. In what ways
does our protocol protect against this attack?

Our first line of defense is to ensure that any single node can only contribute a single value
toward the query. As we mentioned earlier, this is guaranteed by the owner’s signature in the Setup
phase. Thus, a faulty node can only impact the aggregate by providing a value that is extreme in
some sense.

To protect against extreme outliers, we employ a second line of defense. As we proved in the
previous section, the aggregation value ultimately used by the owner is computed entirely by
correct nodes in subgroups that have only correct participants, and all of those subgroups employ
the same sets of values. Any Byzantine value is thus included by all, or excluded by all.

This setup makes it easy to eliminate bad data by including a conditional clause with each query
that will only include reasonable values. Since queries can be any function that is associative and
commutative, a conditional clause that selects only values that fit some statically defined criteria
could easily be included. For example, based on historical records, a power utility might know that
no matter how extreme the weather, individual household power use will always be in the range
of 0 kW/h to perhaps 2.5 kW/h. It could thus submit a query that selects only values in this range.
If a Byzantine node were to then claim a consumption of -5 kW or 1.2 GW for a 4-hour period, that
value would be filtered out by honest nodes when they apply the query function in the Aggregate
phase. The Byzantine nodes cannot avoid this filtering since it will be applied by all honest nodes
computing the query, and at least t + 1 aggregation groups contain only honest nodes.

6.5 Privacy

Now we will show that our algorithm meets our privacy goals of preventing both the system op-
erator as well as individual client nodes from learning more than a small number of anonymous
individual records. First, it is impossible for any node to learn the identity of the node that con-
tributed a particular value during the aggregation process. In the basic and BFT versions of our
protocol, the Shuffle phase effectively anonymizes the senders of the values in the same way that
onion routing anonymizes the senders of Internet packets by hiding values inside encrypted con-
tainers that reveal only one step of the routing path at a time. Intermediate nodes do not learn
the value they are forwarding, and destination nodes have no way of tracing back the path that
led to them. The minimum length of the onion-routed paths also ensures that destination nodes
cannot guess at the sender of a value based on how quickly it arrived since all messages will take
a minimum number of rounds to arrive.” Every node sends and receives a message in every step
of the protocol, hence traffic analysis would not be fruitful. In the high failure rate version of our
protocol, the combination of the Scatter and Gather phases anonymizes the senders since relay
nodes cannot see the values they are relaying, and, by the time any proxy node receives a value,

"Specifically, since all paths are required to be at least 1821/, nodes long, and our overlay guarantees that any node is
reachable from any other node in at most [log, n1 hops, any of /2 nodes could be a possible origin for a message that
arrives in the minimum time.
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enough overlay rounds have elapsed that (by the efficiency property of our overlay network) the
value could have originated at any node.

In the non-Byzantine versions of our protocol, nodes will not share data with each other by
deviating from the protocol, and, during the Aggregate phase, the nodes only send intermediate
query values, not individual records. Therefore, each node only learns individual anonymous val-
ues when it receives them as proxy values in the Shuffle or Gather phases. Each node is chosen
as a proxy by t + 1 different origin nodes on average, so, in expectation, each node learns ¢ + 1
anonymous values. If these nodes do not communicate to the owner, the owner itself does not
learn any individual values from these versions of the protocol because all communications be-
tween nodes are encrypted and only the query result is sent back to the owner. With respect to the
client nodes themselves, an honest but curious client node will glimpse anonymous records—but
only a small number of them— at the protocol step where blinded data is extracted back into raw
form. As a result, over time, a client node can build up a statistical picture of the overall database.
However, this kind of picture could have been explicitly computed using an aggregation query
that randomly samples data, hence it reveals nothing that was not already available in the system.

In the BFT version, we must assume that Byzantine nodes may share information with each
other with out-of-protocol messages. Thus, although the number of individual records learned
by any one node is still limited to the number of senders that chose it as a proxy (2t + 1), the ¢
Byzantine nodes could combine their records to see an expected total of 2t> + t anonymous values.
Since for the BFT version of the protocol (as with the base version) we expect t to be bounded by
[log, n], the number of records learned by a Byzantine node is at most O(log” n).

Without noise injected, this clearly represents a leak, and with sufficient auxiliary data, the
leak could compromise privacy. For example, suppose that an attempt is being made to spy on a
particular home, and the home happens to have two electric hot water heaters that can both be
scheduled to respond to signals from the smart grid. This could be sufficiently distinctive that any
raw data record that reports a count of two such units is very likely from the target home and
will very likely be revealed to the intruder. This motivates the stronger option we now explore, in
which our protocol becomes more complex but can be fully secured against such attacks.

6.6 Differential Privacy

In the smart metering scenario, the most common form of data aggregation involves a summation
over some set of real numbers: For example, power consumption over a given short period, or
anticipated power need, or the amount of power that can be scheduled (consumed early, or late,
if the utility needs a bit of help shaping demand to match the available generation capacity). We
might have thousands of consumers, and each successive aggregation query will typically reflect
different data since the underlying power needs of the household vary fairly rapidly.

As described earlier, the fundamental anonymity protection in our algorithm is through a data
shuffle phase that anonymizes private (raw) data. When the aggregated local data are a single
number, this data shuffle suffices because—even if Byzantine nodes share the raw data samples
they observe—reidentification of anonymous samples that are glimpsed just occasionally would,
in general, not be feasible.

However, we might want to support the aggregation of more complex data, such as high-
dimensional vectors. If a single household contributes a long vector of data, each element of which
is somehow specific to that home, it becomes much more likely that the individual record could
embody patterns that would enable compromised nodes to de-anonymize the random sample to
which they gain access: In effect, a more detailed form of raw data might sometimes be attacked
using forms of auxiliary information that could actually be available. We might also want to sup-
port filtered queries, where certain households are included or excluded based on ID or based on

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 2, Article 16. Publication date: October 2018.



Anonymous, Fault-Tolerant Distributed Queries for Smart Devices 16:19

some properties. Such an extension would be easy to implement: The query for a given iteration of
the protocol is already disseminated by the owner/operator at the start of that iteration and could
certainly include a filtering action. Thus, all that would be required is to have the smart devices
execute the desired preliminary filtering before contributing their data. Unfortunately, this would
trivially allow the utility to learn the raw data of any given household in the present setup by
submitting a filtered query that excludes all but one household.

In this section, we sketch our solution to achieve differential privacy that in turn would make
it possible to extend our application scenarios and support high-dimensional data and filtered
queries with privacy protection. The definition of differential privacy was given in Dwork [11].
For some single iteration of querying, let M be an algorithm producing an answer to a query issued
on any possible database D € D, where D represents the possible databases that can be created
by prefiltering data in various ways at the start of the round. Then, when computing a query on
D, algorithm M should also introduce random noise, thereby randomizing its output. That is, for
a fixed database D, M (D) will be a random variable. Let the distance function d : D X D — N be
defined as the number of records in which two given databases differ. Without loss of generality, we
assume that all the databases contain the same number of records (for example, if the customer’s
data are excluded by the filter, a node could simply contribute default data).

Definition 6.1 (¢-differential privacy). Let M be a randomized mechanism acting on databases. M
is e-differentially private if or only if for any two fixed databases D and D’ such that d(D,D’) = 1,
and for any output M, we have

P(D|M) < P(D’|M) - exp(e). (2)

We’ve expressed the traditional definition in a Bayesian style. This definition is equivalent to the
usual definition [11] if the prior distribution over the databases is uniform (any possible database
is equally likely, that is, P(D) = P(D")).

We focus on the sum query from now on. One possible way to achieve differential privacy in a
database Dj; is for M to compute a noise value calibrated according to the sensitivity of the query
and then add this value to the query result [14]. For example, in the case of the sum query, we can
return

n
M:M(D)=Y+Zvi, 3)
i=1
where Y is an appropriate random variable. A common choice for the distribution of Y when v is
one-dimensional is Y ~ Laplace(0, Z/¢), where Z is a constant representing the global sensitivity
of the query function [12, 14]:
Definition 6.2 (Global sensitivity [14]). The global sensitivity Z¢ of f : D + R is given by
Zp = max D) — f(D")|. 4
f = A |f(D) - (D) 4)

This approach can be generalized to higher dimensional data using appropriate vector norms to
determine sensitivity and to define the high-dimensional noise vector Y [14].

Turning to our scenario, the obvious possibility is to simply inject noise in the aggregation
output, thereby applying the standard machinery of differential privacy but performing the action
in a decentralized manner, as in Dwork et al. [13] or Acs and Castelluccia [2]. These approaches
involve having each smart device inject noise into its raw data before ever contributing it within
the system and selecting this noise in a purely local manner, in such a way that the final aggregated
noise will follow the desired distribution as a function of some fixed privacy parameters. In a
setting where the infrastructure is trusted and the operator only sees the query results, such a
solution would suffice.
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Fig. 3. Example of the paired noise generation scheme. If a query starts on round r when node b has pre-
decessor a and successor ¢, it will add a noise value that it shares with ¢ and subtract a noise value that it
shares with a before contributing its data to the query.

In our setting, however, Byzantine nodes are able to glimpse a random subset of anonymous
but unencrypted data records and must be assumed to share them with the query operator. Thus
a level of noise adequate to protect the query results would not necessarily be sufficient under
the same e-differential privacy requirement: This level of noise does not protect individual data
records. The proxying step, in effect, leaks private information.

One option would be to try to use differential privacy techniques to protect the individual data
contributions themselves, but this proves unsatisfactory. Suppose that each raw data item has
a sufficient level of noise injected at the outset so that even relaying proxy nodes observe only
differentially private information. In this setup, each item must be considered a query that returns
a single record, which has a sensitivity equal to the value itself (calculated in the same way as that
of the sum query). Hence each node is required to inject noise of the same order of magnitude as
the value it intends to contribute. Naively summing such values results in an overall noise with a
variance of size O(n), which is so high as to make the query result useless.

Fortunately, the regular structure of our overlay network offers a simple remedy. Suppose that
we pair nodes in the following manner: In overlay round r, each node a communicates to some
node b. If we consider the pairing (a, b), we obtain a set of node pairs that changes with each
round. Each node will appear in two such pairs: once as the sender, and once as the receiver.

Next, notice that because we assume a PKI, the Diffie-Hellman protocol enables us to construct
a shared secret for each such pair without requiring further communication: Each node knows
the public key of the other as well as its own private key, and this suffices to parameterize the
Diffie-Hellman method without further exchange of information. It follows that every matched
pair (a, b) knows the matching for round r and also has access to a shared secret that can be used
when this matching arises. The same pairing will repeat every n rounds, and we do not wish to
reuse identical random noise values, so we use the shared secret as the seed for a random sequence.

Accordingly, when a run of the query protocol starts, any node i can determine its two coun-
terparts for the current round of the overlay: one to which i sends and one from which i receives.
We can use the shared secrets to select two pseudo-random noise values, such that both members
of each pair select the same noise value for that same query. The distribution of this noise value
must be tuned to provide differential privacy for an individual record, as described earlier. In a pair
(a, b), the “sender” node, a, should add this random noise to the raw data contributed by a for this
query. Simultaneously, the receiver, b, should subtract that same noise value but from the raw data
that b will contribute. (Figure 3 illustrates the association between node pairs and noise values.)
Since each node is a member of two pairs, each node thus modifies its raw data by adding one
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noise value and subtracting another, and no other node has access to both secrets. However, when
we aggregate these values to compute the sum, all or most of the noise (depending on failures)
will cancel out.

Accordingly, we obtain our desired solution by combining the two methods. First, the paired-
noise scheme is used to hide the raw data from our Byzantine nodes. Next, we also have our
aggregation nodes add additional (unpaired) noise to the aggregated output data value, propor-
tional to the sensitivity of the overall query. Now the paired noise cancels, but the additional noise
is still included into the aggregate. This additional noise enables us to assert that the query result
will be differentially private.

With this change, any anonymous random sample constructed by the compromised Byzantine
nodes contains heavily noised values. Lacking any way to know the level of noise that was injected,
or any way to match the pairs of values, forwarding nodes have no possibility of de-noising the
raw data. This is true even though the matching is public and even if the nodes sending to and
receiving from some particular node i were both Byzantine and reveal the amount of noise that
they injected: A compromised proxy node would know that there exists a record that originated
with some particular smart meter containing this specific level of noise but would have no basis
for identifying that record during the forwarding step. Thus, our scheme does not leak any private
data through actions or data available to compromised nodes.

Crash failures complicate the picture by allowing the aggregated noise to depart from the ana-
lytic goals: Although compromised nodes cannot force the exclusion of data, if noncompromised
nodes fail by crashing, we might now include noised inputs that won’t have compensating nega-
tive noise inputs. For example, if node a crashes during a query that starts on round r, then there
will be two uncompensated noise contributions: one (a positive contribution) from the node that
sent to a in round r and one (negative) from the node to which a was scheduled to send in round r.
However, notice that because these noise values were independently drawn from the same distri-
bution, and one was added but the other subtracted, their expected sum is 0. Moreover, the variance
of the uncompensated noise can be shown to be proportional to the node failure probability, which
is expected to be low in most applications. If the infrastructure operator dynamically adapts the
overlay to eject faulty nodes (and later to readmit them once they are repaired or connectivity is
reestablished), the duration of such effects could also be limited. Thus we believe the issue would
not be an obstacle to practical use of our technique, and it does not give compromised nodes any
opportunity for disruptive behavior beyond the potential that already was present.

7 EVALUATION

To evaluate how well our protocol works, we will theoretically analyze some of its performance
properties, then describe our implementation and experimental tests.

7.1 Overheads

All versions of our protocol introduce some amount of communication overhead in order to toler-
ate faults. However, our protocol is still efficient, scaling only with the logarithm of the size of the
network. For the basic version, there are 2t + 2[log, n] + 2 rounds of communication on the over-
lay network: The Shuffle phase takes t + [log, n] + 1 rounds of communication since a tunneled
multicast to k nodes takes k + [log, n] rounds and k =t + 1, and the Echo phase takes another
t + [log, n] + 1 rounds for a disjoint multicast. The Aggregate phase can be considered one ad-
ditional round of communication per node since each node needs to send only one message in
this phase, so there are 2t + 2[log, n] + 3 rounds of communication. Since ¢ is at most [log, n] for
the basic version of the protocol, this means that the protocol will finish in at most 4[log, n] + 3
rounds of communication, which is O(log n). We believe this to be practical and also to represent
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a tight lower bound: One cannot aggregate data from n sources in fewer than O(log n) steps using
a peer-to-peer protocol.

The BFT version also scales logarithmically. There are 6¢ + 3[log, n] + 3 rounds of communi-
cation on the overlay network: The Shuffle phase is one tunneled multicast, and the Byzantine
Agreement phase is two disjoint multicasts, but now k = 2¢ + 1. Each node completes a round of
communication with the owner in the Setup phase and one additional round in the Aggregate
phase, so there are 6t + 3[log, n] + 5 messages. Since t is at most [log, n] for the BFT protocol,
this means the protocol will finish in at most 9[log, n] + 7 rounds, which is O(log n).

The high failure rate version of the protocol has a higher communication overhead in order to
accommodate more than [log, n] failures. There are 2t + 2[log, n] rounds of communication on
the overlay network (¢ + [log, n] for each of the first two phases), plus one round for the Aggregate
phase, so the protocol takes a total of of 2t + 2[log, n] + 1 rounds. However, this value cannot be
bounded by O(log n) since t > [log, n]. Also, note that the number of messages sent per round in
this protocol is much larger than the number of messages per round sent in the other versions.
In the other versions, each node will be used in on average ¢ + 1 or 2t + 1 different disjoint paths,
so on any one overlay round a node will need to send at most ¢ + 1 or 2t + 1 messages (each
containing an encrypted proxy value). In this version, since all nodes flood their encrypted tuples
through the entire network, on a given overlay round, a node may need to forward up to n -t
messages.

Our protocol also has low computational overhead. The only cryptography involved is digital
signatures, public-key encryption, and the symmetric encryption used in TLS connections. In all
versions, for most of the protocol, each node only needs to compute a single public-key encryption
per round (to set up a TLS connection with its target). The Shuffle and Byzantine Agreement phases
are the most expensive. In the Shuffle phase, each sending node must compute O(log n) public-
key encryptions per destination node in order to construct the encrypted onions for paths whose
lengths range from log, n/2 to [log, n], which is O(log? n) total encryptions per node. The BFT
version of the protocol has an additional expense in the Byzantine Agreement phase. First, each
node needs to sign each proxy value it has received; since each node will receive on average 2t + 1
proxy values, this is O(log n) signatures per node. Then, each node must compute O(log n) public-
key encryptions per value that it multicasts in order to encrypt the message with the target’s public
key. Since each node participates in on average 2t + 1 proxy groups, and there are two multicasts
per group, this is O(log® n) total encryptions per node (in addition to the encryptions performed
in the Shuffle phase).

7.2 System Size

We should take a moment to note that our assumption in Section 4.1 that the network size n was a
prime with primitive root 2 is practical. Artin’s primitive root conjecture [29] asserts that, asymp-
totically, the density of primes having primitive root 2 converges to a constant, known as Artin’s
constant, whose value is roughly 0.374. The conjecture is true assuming the Generalized Riemann
Hypothesis, as was shown by Hooley [15] in 1967. We verified experimentally that suitable values
of n are sufficiently dense, which makes it easy to find one that is very close to the actual network
size.

Specifically, we computed all the suitable sizes up to 20,000,000, and found 475,333 of them,
which is indeed about 37% of the prime numbers in the same range as predicted by theory. Figure 4
shows the histogram of the gaps between consecutive suitable sizes. Similarly to the distribution
of gaps between primes, this distribution is approximately exponential. More importantly, we can
observe that any actual size can be approximated with a very high precision, and the relative
precision actually increases with size. The unused node IDs that result from “rounding up” n to
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Fig. 4. Histogram of the distances between a suitable prime and the next suitable prime, based on network
sizes up to 20,000,000.

the nearest suitable prime can either be doubly assigned (giving a few nodes a second ID) or treated
as failed nodes if there are much fewer than ¢ of them.

7.3 Experiments

Our protocol is designed for networks of embedded devices such as smart meters, and we did not
have access to sufficient numbers of such devices to test the protocol on real hardware. However,
we created a detailed software simulation of the smart grid in which to test our algorithm. Our
simulation uses a probabilistic model of electricity consumption based on the one developed by
Paatero and Lund [31] to generate a realistic electrical load at each of n simulated homes. Each
home has an associated “meter” that continuously records the electricity being consumed and can
communicate with any other meter by sending a message through a simulated utility network. The
simulated network chooses latency delays between 2 and 10 ms for each message (using a normal
distribution with a mean of 4, plus a fixed constant of 2), which we believe represents the latency
to be expected from a dedicated network connecting meters in a small local area. The simulation
is event-driven to model an asynchronous system in which each meter reacts independently to
the event of receiving a network message. Failures are modeled by choosing a fixed set of meters
to fail at the beginning of a query and preventing them from sending or receiving messages for
the duration of the query. For the variants that expect only crash failures (not Byzantine failures),
nonfailed meters can detect that a meter has failed when they attempt to send a message to it since
a nonmalicious meter that has crashed will also fail to respond to TCP connection requests.

Paatero and Lund’s model does not include home heating or cooling appliances, but these rep-
resent the largest source of electrical load in most households and present the best opportunity
for demand-side load management via programmable thermostats. Therefore, we added central air
conditioners, window air conditioners, and furnace fans to the model as possible devices that could
generate load at a home. We used data from the American Housing Survey [35] for the penetra-
tion rate (frequency of occurrence) of air conditioners and furnaces and information from several
online datasheets (e.g., [5, 23]) for the per-cycle energy consumption of these devices.

We implemented the basic version of our protocol in this simulation and ran an experiment in
which the utility sent a query to the meters every half-hour asking for two sum values: the total
energy consumption in kilowatt-hours since the previous query and the total energy consumed
by demand-side manageable devices since the previous query (representing load that is available
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Fig. 5. Data collected by the utility, running queries using our system. Red bars are reported nonshiftable
load, while blue bars are reported load from devices with DSM potential (i.e., heating and cooling systems).
The black line is the actual consumption recorded by the meters locally.

1600

12000

No fa‘@lures —e— ‘ _ _a " No fé@lures — _ - <

"g 1400 log(n) fa‘llurfs - : - g 10000 log(n) falluris ’—A: -
; -7 ; Aa - -
£ 1200 aa” £ ST
2 ‘(/ £ 8000 ‘A/‘
£ 1000 | / g
3 t S 6000
g o g 4000
] ]
> 600 >
& 400 g 2000

200 0

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of Nodes Number of Nodes

Fig. 6. Time for a single query to complete, in simulated milliseconds for the basic protocol (left) and the
BFT variant (right).

for shifting). Figure 5 shows the data that the simulated utility collected from our system over
24 hours when running with 1,019 simulated meters and compares the query results with the
true sum of energy consumption recorded at meters locally (obtained by inspecting the global
simulation state).

In addition, we used our simulation to measure the time and bandwidth costs associated with
running our protocol. First, we measured the amount of time it took for a single query to com-
plete as the size of the system scaled up, using the simulator’s internal clock. In order to more
accurately model the time it would take to complete a query, we simulated the overhead of cryp-
tography computations at each node in addition to the delays caused by network latency using
benchmarks measured on OpenSSL to determine the amount of time each RSA encryption, de-
cryption, and signature would take. Figure 6 shows the delay experienced by the system owner
between broadcasting a query and receiving a reliable result from the nodes, in simulated millisec-
onds, for the basic and BFT variants of our protocol. For each system size n, t is set to [log, n],
the largest feasible value for these variants, and we ran the experiment once with no failures and
once with ¢ failures. This experiment shows that queries can be completed in a few seconds even
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Fig. 7. Average data sent per smart meter for a single query, assuming each simulated message is 1kb, for
the basic protocol (left) and the BFT variant (right).

for large networks of devices. Failures, and their associated timeouts, impact the running time of
the query much more than an increase in the system size.

Second, we measured the approximate amount of data that each node would need to send over
the network as the size of the system scaled up. We did this by assuming that each encrypted
value-tuple object had a size of 1kb and counting the number of such messages that each meter
sent during the execution of a single query. Figure 7 shows the average total data sent per smart
meter during a query execution for the basic and BFT protocols, again using t = [log, n]. Note that
failures do not significantly affect the amount of data sent; in fact, they slightly decrease it since
in our model failed nodes do not contribute any tuples to the aggregate (they fail at the beginning
of the query). As the figure shows, even with a large system and the redundancy necessary for
Byzantine fault tolerance, each node needs to send only a few megabytes of data. The amount of
data sent scales with ¢, and since t = [log, n], it increases only logarithmically.

We also implemented the highly crash tolerant version of our protocol in our simulation and ran
similar experiments on it, with t = 0.1n. These experiments are still in progress, but preliminary
results show that it is similar to the BFT protocol in terms of speed: With 797 meters, a query
completes in 1.3 s with no failures and 8.1 s with 10% failures.

Finally, to test our overlay’s usefulness for general peer-to-peer applications, we implemented
an asynchronous version of the overlay network in PeerSim [28] and used it to run a basic epidemic
gossip algorithm in which a source node tries to spread its value to all the nodes in the network.
We then measured the number of rounds of communication it took for a value to propagate to
all nodes with different levels of random node failures and compared this convergence rate to
an epidemic of the same size using a standard random gossip protocol. Figure 8 shows that node
failures delay convergence by only a few rounds, as predicted by the properties of our overlay.
In fact, even with 50% node failures, our overlay converges reasonably quickly and significantly
faster than random gossip. This is because our overlay graph has a high degree of connectedness,
which provides multiple redundant paths by which data can reach each node and results in many
different opportunities for a node to learn about data that it previously missed due to a failure.

8 OTHER USES OF THE OVERLAY

In addition to its uses in our aggregation protocol, the deterministic peer-to-peer overlay network
we described in Section 4.1 is very general-purpose. It provides many of the same features as a
gossip system while providing better tolerance of both crash and Byzantine failures. In fact, it
is more efficient at broadcasting messages through a network than is random gossip because its
derandomized partner selection mechanism means that nodes always gossip with the optimal peer
for spreading data to “uninfected” nodes.
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Fig. 8. Comparison of our overlay with random push gossip with several node failure probabilities.

As our tests in Section 7.3 showed, our overlay is highly resilient to crash failures. In addition,
it is much more resistant to Byzantine behavior than random peer-to-peer communications. In a
random gossip system, Byzantine nodes can send bogus gossip messages at a rapid rate to any or
all of the other nodes, which must accept and process them since honest nodes have no way of
determining whether their peers’ choices are truly random. This allows malicious nodes to target
a single victim node for a denial of service attack by flooding it with messages or introducing as
much invalid data as they want with no limitations on the number of times they contribute relative
to honest nodes. By contrast, all nodes in our system can independently and efficiently compute the
peer-selection function, so every node knows exactly which node it should be receiving a message
from in a given communications round. Honest nodes can thus quickly reject too-frequent or out-
of-order messages, and Byzantine nodes are limited to participating only within the framework of
the correctly functioning overlay.

There are many existing distributed systems applications that use peer-to-peer communications
to spread data around a network which could benefit from being adapted to use our overlay. For
example, Astrolabe [36] is a lightweight data storage system that uses gossip to keep records up to
date, Fireflies [19] is a network monitoring and intrusion detection system that uses regular peer-
to-peer exchanges to monitor node health, and T-Man [17] is an overlay topology management
system that itself uses gossip to set up other overlays. Our overlay would not only make these
systems more robust, it would make them faster because it guarantees that their gossip phases
complete in exactly [log, n] rounds.

On a more basic level, several peer-to-peer distributed computation algorithms have been pro-
posed that are gossip-like but spread computations instead of data around a network. These include
gossip-based aggregation [20], which is a simple distributed aggregation scheme; distributed peer-
to-peer learning [30], which performs stochastic gradient descent based on random walks through
an overlay network; and chaotic matrix iterations [16], which builds a machine learning model by
repeatedly passing it between members of a peer-to-peer network. Such algorithms could be made
more Byzantine fault-tolerant by using our derandomized peer-to-peer network instead of random
peer selection. In addition, they can be made more accurate because our network removes the pos-
sibility of sampling bias that would be caused by random gossip choosing to include some nodes
multiple times and skip others completely.
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9 CONCLUSION

In this article, we have addressed the problem of securely and privately computing aggregate
queries over data stored in a distributed system. The approach is unusual in that we completely
eliminate the need for a trusted third-party data warehouse. Instead, we treat the collection of de-
vices as a virtual data warehouse, and they execute the query through a distributed, collaborative
protocol. The solution is scalable, quite robust, and very inexpensive. As such, we believe it offers
a practical alternative for systems with clients that are too weak to use expensive cryptography
and yet where it is important to minimize disclosure of private data.

Compared to existing data-aggregation schemes that rely on cryptography, the primary tradeoff
of our system is that it requires additional communication overhead in exchange for lower compu-
tational demands. Homomorphic encryption-based aggregation schemes send the encrypted data
directly from the clients to the data analyst, while our system requires clients to relay their data
through several other nodes before sending them to the analyst in order to provide privacy. In a
setting where network bandwidth is readily available but processing power is not, we believe our
system is the appropriate choice.

We actually offer three variants on our protocol. The first is optimized for speed and can tol-
erate crash failures; it is provably private so long as the smart meters can be trusted and if the
class of queries doesn’t include any that filter input data by deciding node by node whether or
not to include data for particular devices. A second much more general version of our protocol
can support filtered queries and is also Byzantine fault-tolerant. Moreover, this version achieves
differential privacy for sums and other aggregates where fractional noise can be injected into the
raw data in such a way that it will aggregate to achieve a target noise level corresponding to an
appropriate noise distribution. However, the extra protection costs us performance, and the results
of the queries contain noise (noise injection is required in the differential privacy model). Other
configurations are also possible; the most interesting of these is one that might slowly leak a ran-
domized anonymous sample from the underlying raw data but gives exact answers to unfiltered
queries even with Byzantine attackers.

We envision our methods being used in systems operated by an honest but curious entity such
as an electric power distributor who carries out a computation that employs aggregated data or
other information collected at large scale to perform a desirable function, such as optimizing power
delivery. The user would choose the lowest-overhead version of our system that meets its pri-
vacy and fault-tolerance needs. For example, utility companies will have regulatory and corporate
policy requirements for safeguarding user privacy (which dictate whether differential privacy is
necessary) and may also have dependability and accuracy requirements (which dictate the level
of fault tolerance necessary); they will choose the most efficient algorithm that can meet these
requirements.

In large systems such as the smart grid where data privacy is a concern, the lack of a practical and
scalable method for aggregating data while preserving privacy has prevented the implementation
of many useful data mining features. We hope that our solution will enable progress and that it
might also prove useful in other kinds of large-scale systems where it is necessary to aggregate
and analyze private data safely.
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