
Invited Paper: Monotonicity and
Opportunistically-Batched Actions in

Derecho

Ken Birman1(B) , Sagar Jha1, Mae Milano2 , Lorenzo Rosa1,3 ,
Weijia Song1 , and Edward Tremel4

1 Cornell University, Ithaca, USA
ken@cs.cornell.edu

2 UC Berkeley, Berkeley, USA
3 University of Bologna, Bologna, Italy
4 Augusta University, Augusta, USA

Abstract. Our work centers on a programming style in which a sys-
tem separates data movement from control-data exchange, streaming
the former over hardware-implemented reliable channels, while using a
new form of distributed shared memory to manage the latter. Protocol
decisions and control actions are expressed as monotonic predicates over
the control data guarding protocol actions. Provable invariants about
the protocol are expressed as effectively-common knowledge, which can
be derived from the monotonic predicates in effect during a particular
membership epoch. The methodology enables a natural style of code
that is easy to reason about, and it runs efficiently on modern hardware.
We used this approach to create Derecho, an optimal Paxos-based data
replication library that sets performance records, and we believe it is
broadly applicable to the construction of reliable distributed systems on
high-bandwidth networks.

1 The Design of RDMA-Friendly Protocols

We are interested in distributed systems in which data transfers are streamed
asynchronously by a layer independent of the one used for coordination, and
in which peers asynchronously exchange control data. The approach makes it
possible for the control layer to be implemented using monotonic deduction.
We start by sketching the overall approach, after which subsections discuss the
framework in greater detail.

In any setting, high performance requires developers to match their proto-
cols to the hardware. The hardware of greatest interest for our work is a type
of network that offers remote direct memory access (RDMA), a technology with
which a process can reliably read or write the memory of another process asyn-
chronously and without locking (the underlying mechanism involves message-
passing between the RDMA network interface cards). RDMA is far faster than
TCP/IP, achieving data rates of 100–200 Gbps and latencies as low as 0.75 µs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 172–190, 2023.
https://doi.org/10.1007/978-3-031-44274-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_14&domain=pdf
http://orcid.org/0000-0003-2400-149X
http://orcid.org/0000-0003-3126-7771
http://orcid.org/0000-0002-4697-1326
http://orcid.org/0000-0003-2108-4998
http://orcid.org/0000-0002-7105-0123
https://doi.org/10.1007/978-3-031-44274-2_14


Monotonicity and Opportunistically-Batched Actions in Derecho 173

Despite its use of RDMA networking hardware, our target environment can
still be modeled in a traditional way. It supports concurrently active processes,
interconnected by asynchronous networks and experiencing infrequent crash
(halting) failures. Network failures do not partition the data center: a severe
disruption will either shut down a group of machines or the entire data center.

Fig. 1. An event triggers a 2PC that sends data (green) in its first phase, then waits
for acknowledgments (dashed) before sending commit messages (red). Efficiency is low:
the full run of the protocol does not end until after all the replies are collected and the
commit has been successfully sent. On a 100Gbps RDMA network, each small message
takes 0.75µs to arrive, which means the entire interaction takes 4.5µs to deliver 100B
of data. This uses only 0.02% of the available bandwidth. (Color figure online)

It is natural to wonder whether protocols such as 2-phase commit, atomic
multicast, leader election, and replicated logging can take full advantage of
RDMA. A first finding is that RDMA is not simply a faster replacement for
TCP/IP: Although RDMA can mimic TCP/IP [15], higher-level protocols that
treat RDMA as if it was TCP/IP gain little speedup. The central issue is latency:
RDMA bandwidth can be 10x-20x better than that of TCP, yet its one-way
latencies are not very different, causing a bottleneck (Fig. 1).

What sorts of protocol-engineering steps are needed to fully leverage ultra-
fast networking? A system can load-balance updates, allowing them to be initi-
ated by all members of the application. Each member could transmit a sequence
or stream of actions, which potentially enables batching multiple operations per
message. It may be feasible to have multiple threads per member, and hence
transmit multiple data streams per member. Peers can send in a one-to-all man-
ner, enabling decentralized decision-making. As illustrated in Fig. 2, which illus-
trates a system streaming atomic multicasts, such steps are indeed helpful. Yet
(and this is also shown in the figure) data flow is likely to remain bursty. There
are limits on how many threads we can have, or how evenly we can spread the
workload. Batching is a wonderful idea, but it delays messages, and sooner or
later, a partial batch may need to be sent. The network remains lightly used and
throughput is limited.

The limiting factor turns out to be the disproportionately high delay noted
above: RDMA delay is low compared with a protocol such as IP, and yet can
seem high when we consider how much data could have been transmitted dur-
ing one RDMA round-trip time. Pausing data transmission to exchange control



174 K. Birman et al.

information, even for a single RTT, will substantially reduce throughput. A sec-
ond issue involves the unpredictable scheduling of endpoint applications: if a
new message arrives but the receiver cannot process it immediately, the sender
will be left waiting.

Lacking a mechanism to reduce the impact of delay, protocol instances will
wait for acknowledgments or commit messages. This will trigger a rapid accu-
mulation of protocol state until resource exhaustion forces the entire system to
pause. As a result, applications will be observed to alternate between streaming
data and pausing to finalize previously-initiated protocols.

Fig. 2. Techniques such as parallel streaming and batching can improve network uti-
lization, yet there is still idle time in the run due to round-trip delays that stall senders.

Our project first encountered this set of challenges when we created Derecho,
a platform intended as a supporting framework for a new generation of cloud
computing applications [12]. Derecho centers on data replication supported by
a self-managed (virtually synchronous) version of Paxos. We decided to build
entirely new protocols from the ground up. Our first step was to separate the
data transportation layer (“data plane”) of the system from the one handling
control data (“control plane”), as seen in Fig. 3, giving each an independent com-
munication channel. Now we can continuously stream, improving concurrency:
members send data messages as updates are initiated. On the receiving side,
these incoming messages trigger state updates, which are reflected in continu-
ously exchanged streams of control data.

Consider a situation in which a receiver participating in some protocol expe-
riences some form of delay. Data piles up briefly, but then the delay ends and
streaming resumes. It will be common for a sequence of pending data messages
or control events to become available as a group (for example, a series of data
messages may have all become deliverable). We use the term opportunistically
batched to refer to an action that can be applied to the whole group of mes-
sages rather one by one, hopefully enabling the receiver to quickly catch up and
amortizing overheads. Opportunistic batching contrasts with sender-side batch-
ing, in which senders deliberately delay messages to group them into fixed-sized



Monotonicity and Opportunistically-Batched Actions in Derecho 175

Fig. 3. By separating data plane (left) from control (right), we can design protocols that
stream data in a continuous and reliable manner, achieving much higher efficiencies.

batches, delaying messages even when doing so is unnecessary. At RDMA speeds,
opportunistic batching is an unqualified improvement: it copes with inevitable
delays yet doesn’t introduce any of its own. Moreover, the technique turns out to
be especially suited to the one-sided RDMA write hardware we use, in which the
receiver asynchronously discovers that some section of its memory has changed,
rather than being explicitly notified each time a new message arrives.

We now need to address two questions. One centers on the best way to stream
data messages reliably while preserving sender order. We describe our work on
this problem in [4,13], and will not repeat that material here.

The second question involves the streaming of control data, and is the main
focus of this paper. Derecho innovates by reexpressing the concept of a stream
of control messages. Rather than viewing such a stream as a series of small
messages, we focus on the actual values, and ask whether a stream of control-
variable updates can be transmitted using the form of shared memory enabled
by RDMA, in which one process is granted permission to asynchronously write
into some memory region in a second process.

Our central idea was to focus on monotonic control data: given a variable such
as a messages-received counter, which only increases, new values can overwrite
older ones. For example, suppose that process a sends message x with id 17 and
then message y with id 18. Process b receives and acknowledges x by writing 17
into a location in the memory of a using a one-sided RDMA write. Now y arrives,
and b overwrites the acknowledgment variable. If a observes 17 first and reacts
to this control event, then observes 18 and reacts to it, it is as if we sent two
acknowledgment messages from b to a. But if a experiences a small delay and
sees the counter jump from 16 to 18, it can infer that 17 was previously reported.
In effect, the observed value (18) covers the range [1 ... 18]. A single RDMA-
shared-memory counter has replaced a stream of acknowledgment messages.

Derecho’s entire control plane is monotonic, and this even includes sequences
of complex objects, such as proposed membership updates: we guard such an
object by a counter and adopt a round-robin model in which we can send
some number of objects without delaying. This approach let us eliminate the
lock-step dependency on round-trip messages carrying acknowledgments and
commits. Jointly, such steps enable the dramatic performance improvements
described in [12]: the system is able to replicate data and coordinate distributed



176 K. Birman et al.

actions with strong consistency at speeds orders of magnitude faster than widely
used datacenter tools such as the Kafka pub/sub message bus, Kafka-Direct (an
RDMA version of Kafka [17,21]), and Zookeeper [14].

1.1 Revisiting an Old Model

Our work builds on a self-managed virtual synchrony membership layer. The idea
of building systems that manage their own membership was introduced in the
1985–1987 period [5–7]. Whereas classic protocols struggle to deal with failures,
virtual synchrony replaces both liveness and failure-tolerance with a subsuming
concept of “dynamic membership.”

Processes must join the system upon starting and cannot exchange messages
with members until they are admitted to the current membership (the current
view). Upon sensing a possible failure, any member can request exclusion of
members suspected of having failed from the current view. No process will accept
or send messages to a suspected peer, and it will promptly be dropped from
the view. This establishes an epoch model, in which each epoch starts with
a new view, performs protocol actions for a period of time, then ends when
the membership management system learns of a new join or failure event. The
membership service will pause the active message-sending protocols, assist in
cleanup to terminate any that were incomplete when paused, then switch to a
new view which initiates a new epoch. Should a full shutdown occur, restart is
similar: the membership service forms what will become the first view, repairs
any persisted state that was damaged by the failure, and then can initiate the
first epoch of the new run. Should any of these steps be impossible (for example,
if persisted data is inaccessible due to crashes), the system refuses to restart and
a human operator would need to repair the problem, for example by loading the
missing data from a backup.

By trusting suspicions and immediately excluding the impacted processes
from the view, virtual synchrony systems wall off potentially malfunctioning
group members. The policy assumes that the rate of mistaken suspicions will
be low, but that assumption is valid in today’s cloud data centers. Importantly,
protocols such as atomic multicast [6] or Paxos replicated logs [18] are simplified
by this model because each instance runs in a single epoch. In effect, we separate
functionality: a protocol has a normal failure-free logic component and a distinct
view-change component used to clean up when a failure disrupts execution, as
we detail immediately below. Finally, the protocol has a component responsible
for reissuing requests (while preserving the sender message ordering) in the event
that cleanup rolled the partially completed messaging protocol back rather than
terminating it by rolling forward and delivering messages. The overall structure
must still guarantee atomicity and ordering (linearizability [11]), but these needs
do not arise all at once.

Derecho, like other virtual synchrony systems (e.g. [1]), uses a leader-
based membership protocol, where age-ranking determines the leader succession
sequence in case of failure; the leader initiates a view change when it learns of
a new join or failure. However, Derecho’s membership protocol is specifically



Monotonicity and Opportunistically-Batched Actions in Derecho 177

designed to use monotonic logic. The new views proposed by leaders form a
monotonic sequence, each building on the prior one. Views must be accepted in
order, and each proposal must individually be accepted by every non-suspected
member. Additionally, the set of healthy (non-suspected) members that accept
a proposal must include a majority of members from both the current view and
from each proposed new view up to and including the new proposal. If some
new membership event occurs while the protocol is running, the leader extends
the list of proposals with follow-on proposals. Similar to the split of data plane
from control plane, we can think of the sequence of proposals as a data plane,
streaming from leader to participants, and the proposal acceptances as a control
plane streaming from participants back to the leader.

We do not wish for this sequence of proposals to ever roll back, or for a
proposal to be lost at some members and yet to commit at others. With this
in mind, when a new leader suspects the older leaders and prepares to take
over, it first queries every non-suspected member it knows of. In doing so, its
own suspicions are immediately shared, and it learns any suspicions or proposals
known to any of those processes. We can then prove that if the system remains
live, any proposal witnessed by a majority of a view will eventually be adopted,
and that any proposal that could have been adopted will be learned by the new
leader. Conversely, if the system loses majority (i.e. observes that a majority of
processes are suspected), it will shut itself down.

Why go to such lengths to make this protocol monotonic? The central issue
revolves around the unpredictable sequencing of events that system members
can experience and the importance of avoiding logical partitioning, in which one
system splits into two separate subsystems that each consider themselves to be in
charge. Members might advance at different rates, but due to monotonicity they
learn of the same views in the same order. Indeed, protocols in which we think
of the peers as reasoning and leveraging monotonicity to take actions based on
monotonic deductions are a hallmark of virtual synchrony and arise extensively
in the Derecho protocols. In some ways this should not be surprising: one could
have made a similar remark about the Isis Toolkit and its protocols in 1987 [5].
Others have reached very similar conclusions. Elaborating the CALM method-
ology for BLOOM (a distributed computing language based on Datalog [2]), a
2013 paper by Ameloot et. al. argues that monotonicity (combined with occa-
sional consensus) is complete for distributed computing in a logically-founded
deductive style [3].

1.2 Effectively-Common Knowledge

Any developer of a non-trivial distributed system eventually encounters a pro-
tocol that is difficult to prove correct. With fault-tolerant systems one issue is
the exponentially large state space that must be considered: distributed runs in
which at each instant, any message that could be in flight might be received, but
also in which any participant might fail. Focusing on our own Derecho protocols,
the most challenging aspects to prove correct are associated with runs in which
the failures could include the initial leader or even a series of leaders, each of



178 K. Birman et al.

which could have made proposals and perhaps even received adequate quorums
to commit some of them. This forces the developer to formalize the concept of a
run, to express the “healthy majority in each view” policy rigorously, and then
to demonstrate that all of this yields a single perceived sequence of views that
will never partition.

The creation of a proof is ultimately an exercise in logical reasoning, and
is increasingly supported by proof checking systems (we have direct experience
with Ivy [22] and have experimented with Coq [8]). Highly visible proofs include
the Dafny proof for IronFleet [10]; Paxos proofs in TLA+ [19] and recent proofs
of a number of protocols using the DistAlgo specification language [20,23]. The
question now arises: does our monotonic protocol specification align well with
formal reasoning?

Not every style of network is conducive to easy correctness proofs. For exam-
ple, protocols expressed using exchanges of unreliable point-to-point messaging
(UDP) are notoriously hard to reason about. UDP does guarantee that a cor-
rupted message will not be delivered, but messages can be lost, delivered out of
order, replayed, or arrive after very long delays. The already large state space
becomes daunting.

It turns out (and this is one of our main contributions) that a virtually-
synchronous monotonic programming style, implemented over RDMA with its
hardware-supported reliability features, dramatically simplifies proof tasks. Logi-
cians refer to information that is simply accepted and trusted by all mem-
bers of a set as common knowledge [9], leading us to use the term effectively-
common knowledge for per-epoch data such as the membership view and other
application-specific information that might be piggybacked along with the view.

Common knowledge can be understood as data that all active members of a
system possess and trust. Every process knows the information, and also knows
that every other process has the identical information. This type of “I know that
you know” inference can be iterated to arbitrary degree. Effectively-common
knowledge is information tied to the epoch. It introduces facts known to every
current member, and that every member can assume that its peers also know,
again iterated to arbitrary degree.

An example of effectively-common knowledge employed in Derecho is the
message delivery ordering used in an epoch. The ordering rule cannot be antici-
pated before the epoch begins: it depends on the membership and the anticipated
message sending patterns in a group, and neither of these is known a priori. By
attaching the ordering rule to the view, Derecho can be flexible and adapt this
rule as needed, while allowing each member to assume for the duration of the
view that every other member knows the same ordering rule. The alternative,
used in the classic Paxos protocol, involves a “competition” for each message
delivery slot, since members can disagree about delivery ordering. That policy
forces the classic Paxos to use just the kind of round-trip message passing we
are trying to avoid due to its sensitivity to delay.

Why not just call epoch knowledge “common knowledge?” The issue is that
common knowledge cannot be gained while a protocol is running (a main result



Monotonicity and Opportunistically-Batched Actions in Derecho 179

in [9]). Effectively-common knowledge, in contrast, is easily generated: we simply
need to create a new epoch.

Appendix A offers some classic examples of common knowledge, showing how
seemingly minor changes to a problem statement can make a protocol “impossi-
ble” to implement. Appendix B then goes to highlight the connection to formal
verification using automated proof systems.

Fig. 4. The shared state table abstraction offers a convenient representation of mono-
tonic protocol control data. In the example shown, processes a and b are streaming
atomic multicasts to a group that also includes c; each has an SST replica and uses it
to share control information with its peers (see [12] for details).

2 Deep Dive: Shared State Table

As discussed in Sect. 1, Derecho separates its protocols into a data plane and a
control plane. The central abstraction used for representing and exchanging con-
trol data is the shared state table or SST (Fig. 4). This table is a replicated data
structure created afresh for each epoch. Every process in the epoch possesses
a copy, within which it owns and can update one row. These updates are then
asynchronously written to its peers using one-sided RDMA write operations,
which are reliable but lock-free (Fig. 5). The effect is that updates arrive con-
tinuously, streaming in an all-to-all pattern.1 Updates to a row arrive in order,
but different peers can see updates to different rows in different orders. If we
were to pause the updates, all SST replicas would converge, but during normal
execution we only do this while switching from epoch to epoch.

Unnoticed updates are a common phenomenon in Derecho, in part because
each process has a single predicate thread. When a process starts up, each pro-
tocol registers one or more predicated actions: a tuple consisting of the boolean

1 All-to-all exchange of control state would scale poorly in many settings, but no issue
arises because Derecho is sharded: most activity occurs in tiny subgroups with just
2 or 3 members. We have experimented with far larger subgroups without problems.
Future systems deploying Derecho in immense subgroups might need to exchange
control data in a different manner, but the underlying principle of asynchronous
updates and monotonic deduction of system state would still apply.



180 K. Birman et al.

function to test and the logic to run if that test evaluates to true. The SST
predicate thread then starts up and loops, evaluating predicates one by one like
a long list of if statements. By the time a predicate is rechecked, the underlying
data may have advanced multiple times, in which case the triggered logic will
catch up by processing several events as a batch.

Derecho’s use of monotonicity plays into this dynamic. Not only is the under-
lying data monotonic, but many aggregating operations over monotonic data are
as well: obvious examples are min and max. This leads us to define predicate
monotonicity: P is a monotonic predicate of some monotonic SST property x if
∀y > x : P (y) ⇒ P (x). It is straightforward to generalize these ideas. Many
expressions computed over monotonic inputs have monotonic results, leading to
the idea of a monotonic row function: A monotonic expression over monotonic
variables in an SST row that can be treated as a higher level abstraction in our
protocols. Similarly, we can define monotonic column functions that are evalu-
ated over the rows of an SST. If a set of values must be treated as a unit and
updated atomically, but do not fit into a single cache-line (the size at which
RDMA writes are atomic), we first update the values, then update some form
of guard, such as a “version counter” (which is a monotonic variable). Any par-
ticipant that sees the updated guard will see the full set of preceding updates,
since writes are applied in sender order.

When we set out to create Derecho’s virtual synchrony view update protocol,
it turned out to remarkably easy to express the algorithm in this manner. Given
the epoch mechanism, we then designed simple atomic multicast (very similar to
protocol II in vertical Paxos) and durable replicated log update protocols (very
similar to classic Paxos in a failure-free run, with the quorum size set to the full
current membership of the group, and the read quorum size set to 1). Again, the
methodology led us directly to simple, highly efficient solutions.

Fig. 5. After updating a row, an SST participant uses RDMA to asynchronously “push”
the new data to the remote replicas. These push operations are lock-free and uncoor-
dinated hence the updates are not totally ordered. However, if one process does two
push operations with the same target, the updates respect the sender order.



Monotonicity and Opportunistically-Batched Actions in Derecho 181

3 Using Logic to Reason About Protocols

A knowledge perspective formalizes a way of describing protocols such as Paxos
that most of us use when reasoning about them. For example, consider the first
stage of a Paxos protocol [18]. The leader (a) sends a proposed update for a
specified slot and ballot number. At the moment of sending it, only a knows
the contents. Upon receiving such a message, participant b learns the contents.
Because a is the sender, b now also knows that a knows the contents, but would
not yet be safe to deliver the message: a and b might both fail, and perhaps no
other member has a copy. In the terminology of Paxos, we would say that the
update is not yet stable. Later, when a process is finally able to deduce that
all other processes have a copy (know the contents), it can conclude that the
update has stabilized. Depending on the particular Paxos protocol used, some
steps can involve all-to-all control-data exchanges. With these versions of Paxos,
if process c discovers that message m has become stable, c may also be able to
deduce that eventually every healthy process will arrive at this same conclusion.

A knowledge logic introduces operators to represent the idea of reasoning
about information directly available to processes in a system (facts), together
with indirect knowledge paths: process a may know that process b knows some
fact f . For example, if a sends a message to b, initially a has no information about
when b will have received that message. Later, b acknowledges the message, and
a now is said to know that b knows any facts carried in the message, etc. This
leads to a hierarchy of knowledge: Ka(f) if a knows f , Ka(Kb(f)), etc. If the
set of participants is known, we write K1

a(f) to denote that a knows that every
member knows f . In a similar sense, Kn denotes the n-fold property that every
process knows, that every process knows, ... (n times), that some fact holds. K∗

denotes common knowledge: a fact for which Kn holds for all values of n.
To make this concrete, here is an example from Derecho’s atomic multicast

protocol. Using asynchronous monotonic deduction over the SST, we employ a
provably-correct safety deduction to detect the condition that all messages from
m to n can safely be delivered, in a round-robin order that also respects the sender
FIFO ordering. If a member has nothing to send, it sends a null multicast. Even
under heavy load, this rule is fast: Experiments showed that the delay from
sending a multicast to delivery is often as small as 1.5us: double the one-way
RDMA latency on our hardware. Moreover, this same pattern arose in several
stages of our protocols, and it lends itself to opportunistic batching.

4 Implications for Other Systems

The success of the effectively-common knowledge model as an enabling tool for
Derecho’s asynchronous, monotonic control plane surprised even the develop-
ment team. We were led to adopt this model by the sequence of insights laid
out in the paper: first the recognition that asynchronous streaming is the key to
high performance on modern networks supporting RDMA, then that this pat-
tern is easy to achieve for data streams but much more challenging with control



182 K. Birman et al.

data. This then led us to the insight that monotonic control data could stream
quite efficiently if the applications consuming the data are able to reason using
a monotonic deductive style, in which missing an update or two poses no diffi-
culty at all because the next deductive inference simply “catches up” on a batch
of events rather than just one. Opportunistic batching doesn’t impact protocol
complexity but it does change the “constants.” Fewer messages are needed, and
when one process falls slightly behind it can catch up quickly.

The power of this sequence of steps became clear when we realized that
our Paxos protocol achieves theoretical lower bounds proved by Keidar and
Schraer [16]. No proof was required: Keidar and Schraer express their bounds in
terms of the number of message exchanges required to safely deliver an atomic
multicast or a similar update. A colleague of ours at the University of Surrey,
Professor Gregory Chockler, offered to review the specification of the Derecho
protocol and undertook to count the exchanges of information that occur through
the intermediary of the Derecho SST. He pointed out that the number of remote
RDMA writes performed by Derecho matches the bound they derived. Interest-
ingly, this is actually a worst case for Derecho: because of batching, Derecho
will sometimes omit some writes, performing one write at the end of a batch of
message receives. When this happens, we actually do even better than the lower
bound! On the other hand, opportunistic batch sizes are limited, so the speedup
is at best a constant factor.

Seemingly, simply by setting out to express the control plane of Derecho as an
asynchronous stream of monotonic information, we stumbled upon an optimal
Paxos implementation. This is particularly striking because, to our knowledge,
no prior Paxos is optimal in the Keidar and Schraer sense. Yet we did not set
out to achieve this property: it emerged from our methodology. Thus while the
idea of effectively-common knowledge may be somewhat esoteric, the pragmatic
value of the overall methodology is evident. It forces a new mindset, and this
mindset turns out to align closely with the “right” way to think about protocols.

Recalling our 2PC examples from the introduction, it makes sense that mono-
tonic SST-based protocols can achieve optimal behavior. Suppose that a is using
a 2PC to stream reliable multicasts to b, c, etc. Clearly, a 2PC can commit as
soon as the required set of acknowledgments are received, which we express as
an aggregation query over the SST. Process a, looping through a series of SST
predicates, will reevaluate this query again and again, reacting as soon as the
needed property is observed. Nonetheless, a’s discovery of message stability may
Snot occur instantly when b performs its RDMA write to acknowledge recep-
tion. After all, a also has other work to do and the predicate thread might not
get a chance to reevaluate the predicate “instantly” in a real-time sense. But
our opportunistic batching approach allows a to sense that the commit property
was achieved for this 2PC instance the very next time the aggregation query
is performed – and because of monotonicity, a simultaneously detects stability
for any other instances that have reached the same knowledge level! Thus, the
detection of safety occurs as early as possible and covers all the 2PC instances
that are now committable, as a batch.



Monotonicity and Opportunistically-Batched Actions in Derecho 183

We have come to believe that distributed protocols are best visualized from
an information-theoretic perspective in which the protocol developer asks what
knowledge is gained from each deductive inference performed by the system, and
what knowledge is communicated in each message or remote RDMA write. We
begin to express safety properties as knowledge predicates: K1 knowledge being
the case required for most steps of Paxos (for example, “when process p deduces
that all peers have received message m, it learns that m cannot be lost and hence
that it is safe to advance to the next protocol stage”). Monotonicity makes the
SST compact, while also guiding the developer towards opportunistic batching.

This methodology could usefully be applied in other settings that depend on
strong consistency or other forms of strong guarantees. Databases and transac-
tion systems are an obvious candidate to consider, but it is notable that even
modern ML training systems provide fault-tolerance and exactly-once semantics
(many MapReduce frameworks adopt this approach). Microsoft’s Azure stor-
age fabric is strongly consistent, and the AWS S3 infrastructure recently added
strong consistency as well. The same sequence of reasoning and development
that yielded Derecho would be a promising basis for work that could lead to
speedups in all of these cases.

5 Conclusion

Our paper is an outgrowth of work on Derecho, a system created at Cornell to
support distributed application development. The paper focuses on effectively-
common knowledge, defining this concept, discussing its value (illustrated by an
unusually efficient message-ordering policy), and describing its implementation.
The approach lends itself to a style of monotonic exchange of state informa-
tion that enables opportunistically batched decision-making, and is particularly
efficient in systems supporting RDMA hardware.

Acknowledgements. The authors are very grateful to Luis Rodriguez, who read
an earlier draft of this paper and suggested many ways that it could be improved.
The SSS 2023 reviewers were incredibly helpful. Our work was funded, in part, by
grants from AFRL under its SWEC program, Microsoft Research and Siemens, and
the experiments summarized here used hardware generously provided by NVIDA and
its Mellanox subsidiary.

Appendices

The two appendices in this section provide additional detail going beyond the
material in the body of the paper. Neither is needed to understand our main
contributions. Appendix A offers two examples of common knowledge, drawing
on examples from [9]. Appendix B discusses the connection between effectively-
common knowledge and a tactic used when formally verifying protocols using
provers that can fully automate subproofs provided that they are fully expressed
in a decidable fragment of first-order logic (often, the subset that the Z3 SMT



184 K. Birman et al.

solver can handle). We considered but decided against including an appendix on
RDMA (this kind of hardware has been actively discussed for at least a decade,
and there is an excellent Wikipedia article covering the one-sided write feature
we used), and on virtual synchrony (well known to the community since 1987).

Appendix A: Common Knowledge

A.1 Impossibility of Outdoor Dining in Seattle

Two friends work in Seattle, a city known for cloud cover and damp weather,
but when the sun pops out they would prefer to meet outside. The complication
is that both sometimes attend meetings in rooms lacking phone reception. A
first idea is that if one of them notices that the weather is fine, they will text
the other, who will confirm, and then they can meet outside for lunch.

“But wait”, says one to the other. “If I text you, but receive no reply, I
will have to assume that my text was not received. In that case I would wait
for you here, in the cafeteria.” “In fact,” replies the other, “I would have the
symmetric problem: even if I do receive your text, I wouldn’t know that you
received my confirmation, and would have no choice but to wait for you in here
in the cafeteria. And if you confirm my confirmation, that doesn’t help either!”

This is very strange. After all, once the intial text is confirmed, and the
confirmation is confirmed, both are aware that it is a sunny day. Yet no matter
how many messages they exchange, they do not converge to the identical state.
An inductive analysis always leads to the cafeteria: their “default” option.

Both fall silent: the impossibility of meeting outside for lunch now being
apparent. “Well,” says one, “if the weather is nice I’ll just send you a text and
will be out here. No need to confirm. If you can’t make it, I’ll understand!”

This first example illustrates that (1) Posed in this manner, logicians can
only base “symmetric” decisions on existing common knowledge. (2) No matter
how many messages are exchanged knowledge asymmetry cannot be eliminated.
Of course, in real life we don’t need common knowledge (and sometimes, things
happen, and we can’t join the lunch crowd).

Discussion: The insight to take from this first story is that distributed systems
in which information must be observed (by some process) and then learned (by
other processes) embody an asymmetry. When formalized, their members will
never all be in the identical knowledge state, and attempts to achieve symmetry
lead to unbounded yet ineffective exchanges of messages.

In what way is this relevant to distributed computing? The main and perhaps
only importance relates to specification and proof. It is very easy to write a
specification that unintentionally requires common knowledge. However, such a
statement must either be implied from the initial conditions (and hence vacuous),
or if not, cannot be achieved by any protocol. A proof assistant can check the
logic of a given proof, or even find certain kinds of proofs or counterexamples
on its own, but will not signal this type of specification error. Thus a seemingly
innocent mistake can lead to an impossible-to-prove specification. The person



Monotonicity and Opportunistically-Batched Actions in Derecho 185

tasked with carrying out the proof would either give up or, more likely, abandon
parts of the task. This last scenario should worry us: it suggests that there could
be “proved correct” systems for critical tasks that actually ignore parts of the
protocols used.

Effectively-common knowledge is in fact not identical to the form of common
knowledge of the kind Halpern and Moses considered in [9]. With effectively-
common knowledge, we consider a modular system in which one module imple-
ments epochs, and the other modules run within epochs and simply trust the
view and any annotations as if they were common knowledge. We carry out sepa-
rate proofs for the two modules, then compose one system from the two modules.
Our proof coverage is stronger, and the developer never confronts what would
otherwise be an infeasible task.

A.2 The Inscription on the Cake was a Lie!

On Carol’s birthday, her friends come to play outside before lunch. It being
Seattle, all are quite muddy when they enter the kitchen. “In this house we have
a rule!”, proclaims her father, Ted. “No dessert for anyone who has a dirty face!”.
His wording is ill-chosen, because no child likes to wash their face, and every child
optimistically believes their own face to be clean until proven otherwise. None
moves a hair, although all the children see one-another’s dirty faces. Increasingly
annoyed, Ted repeats himself a few times. But even after n repetitions (n being
the number of children), no child has washed. Ted puts the cake to the side and
sends them all to wash up.

Later he relents after Carol explains the inductive proof that justified their
action. She first addresses n = 1. “Daddy, just the other day this happened.
You told me I would need to wash if my face was dirty, but I was hoping it was
clean.” “Carol, ” replies Ted, “all you needed to do was to look in the mirror.”
“But Daddy, the mirror is too high!”. Ted is forced to acknowledge that Carol
would have had no way to deduce that her face must have been dirty.

“Now Daddy, consider n = 2. Timmy and I come in, both dirty. You remind
us of the rule. But neither of us likes to wash our faces, and anyway, Timmy is
mean and would love for me to not get cake and have to watch him enjoying it.
And I feel the same! So we both look at each other, and I see that Timmy’s face
is dirty, and he sees that mine is dirty, and neither of us moves.” Ted replies,
“Yes Carol, but now your logic fails. I repeated myself.” “You did, Daddy. But I
was hoping my face was clean. Timmy hoped that his was clean. So our decision
not to go and wash up was consistent with one of us believing that neither of
our faces was dirty, even if it also consistent with one in which both of us had
dirty faces. You didn’t give us enough information!”

At the next party, when the children come in from playing, Ted first says
“Well, I see some very dirty faces here!” and then repeats the household rule
n times. On the nth repetition, all the children simultaneously rush to the sink
and wash up. Beaming, Ted unveils a cake which is inscribed: “K∗ is necessary
and sufficient!” The children groan: A typical Seattle “dad joke.”



186 K. Birman et al.

Later, Carol corners her dad. “Daddy, that was embarrassing! What if one
of my friends hadn’t heard you clearly at the start!” Ted realizes that this is a
valid criticism: was his initial statement genuinely common knowledge?

Discussion: Here, we illustrate another peculiarity of common knowledge. Even
in classic problems such as muddy children, it is debatable that common knowl-
edge is really being introduced dynamically. To the extent that this does occur,
some form of assertion of trust is required: the participants trust that the mech-
anism that shared the new common knowledge is completely reliable.

An epoch-based virtual synchrony system has an advantage here: to switch
from epoch j to epoch j, members definitely must receive and “install” the new
view together with any additional data annotating it. Thus for process a to
interact with process b as members of epoch j, it genuinely is the case that
both have replicas of the new view. By proving that the group membership
cannot partition into two logically distinct views, we arrive at guarantee that
the annotation can be treated like common knowledge. Ted, for example, waited
until all the children were present and then assumed they would understand him.

A.3 Other Forms of Effectively-Common Knowledge

The example we offered in Sect. 1.2 focused on message ordering. What would
be other uses for effectively-common knowledge?

A good place to start is with an old, classic, database partitioning scenario.
When ATM machines were first introduced, they depended on dialup modems
that were not always able to establish a connection (a flurry of ATM use could
overload the central modem pool, leading to persistent busy signals). To fix the
issue, banks introduced the idea of a “primary ATM”. Perhaps, Carol almost
always uses the ATM machine at the intersection of Main Street and Old Market
Avenue. The bank could give that ATM “ownership” of some of Carol’s current
balance. For a withdrawal up to this limit, the ATM could authorize that trans-
action without first phoning the main office. Of course, the bank’s other ATMs
would not be able to access Carol’s full balance: the bank has locked down this
portion of her balance. But schemes were then proposed for dynamically adapt-
ing the policy.

More broadly, effectively-common knowledge arises in situations where some
form of policy will span a dynamically varying set of participants. If the partic-
ipant set was non-varying, we don’t really need effectively-common knowledge:
totally ordered multicast would suffice. But if the set of participants changes and
simultaneously we need a policy that depends on a nondeterministic decision or
attribute of the members, it is hard to avoid an effectively-common knowledge
model.

Our insight is that virtual synchrony epochs can be viewed as virtualizing
many otherwise intractable behaviors and unachievable guarantees. Within an
epoch, failures “do not occur”, hence protocols do not need to be fault-tolerant.
Instead they can simply trust the view. And then when we realized that it would
be faster to preagree on multicast delivery order in Derecho, we simply annotated



Monotonicity and Opportunistically-Batched Actions in Derecho 187

the view with the ordering policy to use. The fully generalized case simply allows
the application itself to provide additional annotations, which it can then treat
as effectively-common knowledge once the epoch begins.

Appendix B: Higher-Order Protocol Components

Effective common knowledge in the context of virtually synchronous epochs
enables a deductive strategy also seen in protocol verification. This statement
may feel like a non-sequitor: any protocol exchanges messages to gain informa-
tion, and is designed to achieve a state in which it is safe to take whatever action
the protocol embodies. Yet we do not normally think of formal reasoning of the
kind used in protocol verification as offering ideas that can be directly useful in
protocol design.

Developers of complex protocols have always struggled to prove them cor-
rect. Today this burden is much reduced: Provers such as Dafny, TLA+ and
Ivy are widely used to check the correctness of protocols [10,19,22]. DistAlgo, a
specification and proof framework, goes even further, allowing rigorously spec-
ified protocols to be proved correct and even generating an executable verified
code instance [20]. Less widely appreciated is that they struggle to overcome a
significant expressivity limit. Today’s most popular provers operate by taking a
specification and reducing it to a decidable logic formula expressed entirely in
first order logic. The basic tactic is to form a conjunction of protocol invariants,
invert it, and then use Z3 (an SMT solver) to search for a counterexample. If Z3
terminates, either it exhibits a counterexample and the protocol is not correct,
or it finds none and the protocol is proved. If Z3 fails to terminate, the devel-
oper modifies assertions and then tries again. If a protocol is buggy, this yields
a concrete example of how the bug can be triggered.

The expressivity issue stems from the inability of first-order logic to capture
and hence verify higher order properties, such as conditions that need to be
expressed over traces, or progress conditions. However, encountering such an
issue is not a dead end. In such systems it is also possible for a developer to
combine hand-created higher order proofs with first order automated checking.

To see how this is done, we should start by noting that first-order provers
normally support modularization of protocol proofs, allowing the user to isolate
and reason about a component of the protocol without simultaneously reasoning
about the rest of the system. An example of this might involve a “sub-protocol”
for forming a collection of processes into a ring: an example relevant to our
running example, which used a ring to define the round-robin order used in
Derecho message delivery.

It may be surprising to realize that a ring is an example of a system property
that cannot be expressed in a first order logic. The central issue is that first-order
logics are limited to boolean variables, relations that take boolean inputs and
output a boolean result, logical conjunctions and (with significant limitations)
existential quantifiers. This model is not strong enough to define the natural
numbers, or to talk about the natural order on the natural numbers, and for



188 K. Birman et al.

the same reason, it is not strong enough to express some properties that depend
on protocol traces that represent runs. And, to be very specific, first order logic
cannot verify a protocol that organizes a set of nodes into a ring.

Yet this is simply a limitation of first-order logic. There are many logics within
which we do have access to the natural numbers, can reason about orderings and
other properties, and can define a ring. For example, on a ring every process has
a predecessor, a successor. Call these pred(a) and succ(a) for process a. Both
are unique, and moreover there exists some integer k such that predk(a) = a
and succk(a) = a. The issue is that to the extent that Dafny and Ivy proofs are
checked by Z3, we accept that it will be infeasible to verify protocol modules
that maintain properties such as the ring one. There would be no problem doing
this in a higher-order logic such as the one used in Coq, but the task will be
much less automated: a human would need to carry out the proof, and perform
many steps by hand.

The usual work-around is to provide a second proof framework in which a
human developer can express higher order questions and carry out higher order
proofs of protocol fragments that rely on higher order logic. To integrate such
proofs into the first-order layer, they then need a way to export artifacts from
these proofs back into first-order logic (and keep in mind: this cannot involve
extending first order logic, which is a fixed and unchangeable aspect of the
methodology).

The solution leverages the fact that first order logic can express relations:
functions on first-order variables that perform some kind of logical computation
and return true or false. We simply treat the higher order protocol as an unin-
terpreted black box that outputs relations magically populated with the correct
content. Our higher order protocol component can be proved to correctly con-
struct these relations. Then, having completed this proof, we can simply declare
that “there exists a relation with the following properties”, using first-order logic
to define those properties. In this way, the higher-order artifact can be reasoned
about rigorously, then used as a tool by the first-order relation. This is how first-
order systems deal with properties such as the ordering on the natural numbers.

Thus, from the perspective of the first order logic, succ, succk, pred, predk

and k are relations, but uninterpreted ones populated “elsewhere”. To reason
about how they are constructed we use the higher-order prover. But if we simply
need to describe a step in which a protocol takes some action, such as a node a
passing a message to its successor, we can use an existential quantifier to assert
that there exists a node b such that succ(a) = b, and this uses only first-order
logic, because the verifier doesn’t actually need to compute a value for a or b:
it treats the logic statement as a universal property. The same is true for the
assertion that in a ring, ∃k : succk(a) = a. This statement is true for all rings,
and for all members, and hence the first-order prover can make use of it without
needing specific values.

Our realization was that these higher order objects and properties are a
bit like effectively-common knowledge: the first-order layer of the protocol sim-
ply trusts that they exist and were properly created. By packaging effectively-



Monotonicity and Opportunistically-Batched Actions in Derecho 189

common knowledge as an annotation to the view, we simplify the use of this
idea. The developer writes software to run in the membership leader and able
to compute any desired annotations for the next membership view. One would
potentially need to prove that module correct, in the higher-order logic. Having
done so, the output of the module becomes effectively-common knowledge and
can be treated as a well-known fact by processes running during the epoch. In
effect, we compartmentalize an otherwise complicated, error-prone task.

We are not claiming that such steps magically make proofs trivial. In the case
of Derecho, we are still faced with doing manual higher-order proofs for many
properties. As an example, the termination condition for Derecho’s virtually
synchronous view update protocol is a fixed-point: eventually either the system
shuts down, or reaches a point where (1) some process believes itself to be the
leader, and (2) it suspects every higher-ranked process, and (3) it gains consent
for some sequence of membership updates, (4) that consent is obtained from
a majority of the most recently active view, and from a majority of members
of each proposed view, and (5) no process in the last of these proposed views
suspects the leader. This is clearly not expressible in first-order logic, nor is it a
trivial proof goal even when expressed in higher-order logic. Yet it is a feasible
proof goal, and yields a progress condition for Derecho. We can even express
optimality assertions as higher-order statements.

References

1. Agarwal, D.A., Moser, L.E., Melliar-Smith, P.M., Budhia, R.K.: The Totem
multiple-ring ordering and topology maintenance protocol. ACM Trans. Comput.
Syst. 16(2), 93–132 (1998). https://doi.org/10.1145/279227.279228

2. Alvaro, P., Conway, N., Hellerstein, J.M., Marczak, W.R.: Consistency analysis
in bloom: a CALM and collected approach. In: Conference on Innovative Data
Systems Research (2011)

3. Ameloot, T.J., Neven, F., Van Den Bussche, J.: Relational transducers for declar-
ative networking. J. ACM 60(2) (2013). https://doi.org/10.1145/2450142.2450151

4. Behrens, J., Jha, S., Birman, K., Tremel, E.: RDMC: a reliable RDMA multicast
for large objects. In: 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Luxembourg City, Luxembourg, pp.
71–82. IEEE (2018). https://doi.org/10.1109/DSN.2018.00020

5. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In:
SOSP 1987, Austin, Texas, USA, pp. 123–138. ACM (1987). https://doi.org/10.
1145/41457.37515

6. Birman, K.: Guide to Reliable Distributed Systems: Building High-Assurance
Applications and Cloud-Hosted Services. Texts in Computer Science. Springer,
London (2012). https://doi.org/10.1007/978-1-4471-2416-0

7. Birman, K.P.: Replication and fault-tolerance in the ISIS system. SIGOPS Oper.
Syst. Rev. 19(5), 79–86 (1985). https://doi.org/10.1145/323627.323636

8. Coquand, T., Huet, G.: Constructions: a higher order proof system for mechanizing
mathematics. In: Buchberger, B. (ed.) EUROCAL 1985. LNCS, vol. 203, pp. 151–
184. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15983-5 13

9. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990). https://doi.org/10.1145/79147.79161

https://doi.org/10.1145/279227.279228
https://doi.org/10.1145/2450142.2450151
https://doi.org/10.1109/DSN.2018.00020
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
https://doi.org/10.1007/978-1-4471-2416-0
https://doi.org/10.1145/323627.323636
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1145/79147.79161


190 K. Birman et al.

10. Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017). https://doi.org/10.1145/3068608

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.org/
10.1145/78969.78972

12. Jha, S., et al.: Derecho: fast state machine replication for cloud services. ACM
Trans. Comput. Syst. (TOCS) 36(2), 1–49 (2019)

13. Jha, S., Rosa, L., Birman, K.P.: Spindle: techniques for optimizing atomic mul-
ticast on RDMA. In: 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), pp. 1085–1097 (2022). https://doi.org/10.1109/
ICDCS54860.2022.00108

14. Junqueira, F., Reed, B.: ZooKeeper: Distributed Process Coordination, 1st edn.
O’Reilly Media Inc., Sebastopol (2013)

15. Kashyap, V.: IP over InfiniBand (IPoIB) architecture. Technical report (2006)
16. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus performance.

In: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2006, Denver, Colorado, USA, pp. 169–178. ACM
(2006). https://doi.org/10.1145/1146381.1146408

17. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for
log processing. In: Proceedings of the NetDB, vol. 11, pp. 1–7 (2011)

18. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998). https://doi.org/10.1145/279227.279229

19. Lamport, L., Matthews, J., Tuttle, M., Yu, Y.: Specifying and verifying systems
with TLA+. In: Proceedings of the 10th Workshop on ACM SIGOPS European
Workshop, EW 10, Saint-Emilion, France, pp. 45–48. Association for Computing
Machinery (2002). https://doi.org/10.1145/1133373.1133382

20. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA
2012, Tucson, Arizona, USA, pp. 395–410. ACM (2012). https://doi.org/10.1145/
2384616.2384645

21. Network-Based Computing Laboratory at the Ohio State University: RDMA-based
Apache Kafka (RDMA-kafka). https://hibd.cse.ohio-state.edu/kafka

22. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifica-
tion by interactive generalization. SIGPLAN Not. 51(6), 614–630 (2016). https://
doi.org/10.1145/2980983.2908118

23. Shivam, K., Paladugu, V., Liu, Y.: Specification and runtime checking of Derecho,
a protocol for fast replication for cloud services. In: Proceedings of the 2023 Work-
shop on Advanced Tools, Programming Languages, and PLatforms for Implement-
ing and Evaluating Algorithms for Distributed Systems, ApPLIED 2023, Orlando,
Florida. ACM (2023). https://doi.org/10.1145/3584684.3597275

https://doi.org/10.1145/3068608
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/ICDCS54860.2022.00108
https://doi.org/10.1109/ICDCS54860.2022.00108
https://doi.org/10.1145/1146381.1146408
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/1133373.1133382
https://doi.org/10.1145/2384616.2384645
https://doi.org/10.1145/2384616.2384645
https://hibd.cse.ohio-state.edu/kafka
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/3584684.3597275

